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Abstract

A common way of image denoising is to project a noisy image to the sub-
space of admissible images made for instance by PCA. However, a major
drawback of this method is that all pixels are updated by the projection,
even when only a few pixels are corrupted by noise or occlusion. We pro-
pose a new method to identify the noisy pixels by `1-norm penalization
and update the identified pixels only. The identification and updating of
noisy pixels are formulated as one linear program which can be solved
efficiently. Especially, one can apply the ν-trick to directly specify the
fraction of pixels to be reconstructed. Moreover, we extend the linear
program to be able to exploit prior knowledge that occlusions often ap-
pear in contiguous blocks (e.g. sunglasses on faces). The basic idea is
to penalize boundary points and interior points of the occluded area dif-
ferently. We are able to show the ν-property also for this extended LP
leading a method which is easy to use. Experimental results impressively
demonstrate the power of our approach.

1 Introduction
Image denoising is an important subfield of computer vision, which has extensively been
studied (e.g. [2, 6, 1, 9]). The aim of image denoising is to restore the image corrupted by
noise as close as possible to the original one. When one does not have any prior knowl-
edge about the distribution of images, the image is often denoised by simple smoothing
(e.g. [2, 1]). When one has a set of template images, it is preferable to project the noisy im-
age to the linear manifold made by PCA, which is schematically illustrated in Fig. 1 (left).
One can also construct a nonlinear manifold, for instance by kernel PCA, requiring addi-
tional computational costs [6]. The projection amounts to finding the closest point in the
manifold according to some distance. Instead of using the standard Euclidean distance (i.e.
the least squares projection), one can adopt a robust loss such as Huber’s loss as the dis-
tance, which often gives a better result (robust projection [9]). However, a major drawback
of these projection approaches is that all pixels are updated by the projection. However,
typically only a few pixels are corrupted by noise, thus non-noise pixels should best be left
untouched.

This paper proposes a new denoising approach by linear programming, where the `1-norm
regularizer is adopted for automatic identification of noisy pixels – only these are updated.
The identification and updating of noisy pixels are neatly formulated as one linear program.
The theoretical advantages of linear programming lie in duality and optimality conditions.
By considering both primal and dual problems at the same time, one can construct effective
and highly principled optimizers such as interior point methods. Also, the optimality con-
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Figure 1: Difference between projection methods (left) and our LP method (right).

ditions enables us to predict important properties of the optimal solution before we actually
solve it. In particular, we can explicitly specify the fraction of noisy pixels by means of the
ν-trick originally developed for SVMs [8] which was later applied to Boosting [7].

In some cases the noisy pixels are not scattered over the image (“impulse noise”), but
form a considerably large connected region (“block noise”), e.g. face images occluded by
sunglasses. By using the prior knowledge that the noisy pixels form blocks, we should be
able to improve the denoising performance. Several ad-hoc methods have been proposed
so far (e.g. [9]), but we obviously need a more systematic way. We will show that a very
simple modification of the linear program has the effect that we can control how block-
shape like the identified and reconstructed region is. In the experimental section we will
show impressive results on face images from the MPI face data base corrupted by impulse
and block noises.

2 Image Denoising by Linear Programming

Let {tj}
J
j=1 be the set of vectors in <N , which have been derived for instance by principal

component analysis. The linear manifold of admissible images is described as

T =
{

t | t =
∑J

j=1
βjtj , βj ∈ <

}

Now we would like to denoise a noisy image x ∈ <N . Let us describe the denoised image
as x̄. In order that the denoised image x̄ is similar to admissible images, x̄ should be close
to the manifold:

min
β

d1

(

x̄,
∑J

j=1
βjtj

)

≤ ε1, (1)

where d1 is a distance between two images. Also, we have to constrain x to be close to x̄,
otherwise the denoised image becomes completely independent from the original image:

d2(x̄, x) ≤ ε2, (2)

where d2 is another distance. A number of denoising methods can be produced by choosing
different distances and changing how to minimize the two competing objectives (1) and (2).
In projection methods, ε1 is simply set to zero and ε2 is minimized with d2 being set to the
Euclidean distance or a robust loss.

A Linear Programming Formulation Our wish is that most pixels of x stay unchanged
in x̄, in other words, the difference vector α = x̄ − x should be sparse. For this purpose,
d2 is chosen as the `1-norm, as it is well known that the `1-norm constraints produce sparse
solutions (e.g. [7]). Also for d1, the `∞-norm is especially interesting as it leads to linear
programming. We design the optimization problem as follows:

min
α,β

∥

∥

∥
x + α −

∑J

j=1
βjtj

∥

∥

∥

∞
(3)

‖α‖1 ≤ C, (4)



where ‖x‖∞ = maxi |xi|, ‖α‖1 =
∑N

i=1
|αi| and C is a constant to determine the sparse-

ness, i.e. the solution α tends to become more sparse as C decreases. Geometrically, this
optimization problem is explained as Fig. 1 (right). The constraint (4) keeps x̄ within the
`1-sphere centered on x. The optimization finds a point in the sphere, which is closest to
the linear manifold. As a side effect, we have another solution

∑

j βjtj on the manifold.
We call the former the “off-manifold solution” and the latter “on-manifold solution”. Here,
we are mainly concerned with the off-manifold solution, because of the sparsity.

Let us actually formulate (3) as a linear programming problem. It is equivalent to

min
α,β,ε

1

N

∑N

n=1
|αn| + νε (5)

∣

∣

∣

∣

xn + αn −
∑J

j=1
βjtjn

∣

∣

∣

∣

≤ ε, n = 1, . . . , N,

where ν is a regularization parameter. Still this problem is not linear programming because
of |αn| in the objective function. Next let us restate α as follows:

α = α+ − α−, α+
n , α−

n ≥ 0, n = 1, . . . , N.

Then (5) is rewritten as the following linear programming problem:

min
α±,β,ε

1

N

∑N

n=1
(α+

n + α−
n ) + νε (6)

α+
n , α−

n ≥ 0,

∣

∣

∣

∣

xn + α+
n − α−

n −
∑J

j=1
βjtjn

∣

∣

∣

∣

≤ ε, n = 1, . . . , N. (7)

Here we used the well known fact that either α+
n or α−

n is zero at the optimum.

The ν-Trick In the above optimization problem, the regularization constant ν should
be determined to control the fraction of updated pixels. Interestingly, ν has an intuitive
meaning as follows: Let Np denote the number of nonzero elements in α. Furthermore
let Nc be the number of “crucial pixels” which are not updated, but the corresponding
constraint constraints (7) are met as equalities. If one of these pixels is modified, then it
will likely lead to a different solution, while changing any of the other N −Np −Nc pixels
locally does not change the optimal solution.

Proposition 1. Suppose the optimal ε is greater than 0. Then the number of nonzero
elements Np in the optimal α is

1. upper bounded by νN , i.e. Np ≤ νN and

2. lower bounded by νN − Nc, i.e. Np ≥ νN − Nc.

The proof is a special case of the one of Proposition 2 and is omitted. The slack in the bound
only comes from Nc. In practice we usually observed small values of Nc. We suspect that
its value is related to J – the number of basis vectors.

In terms of images, one can bound the anticipated fraction of noise pixels by ν. In contrast,
the constant C in (4) specifies the sum of noise magnitudes, which is in practice rather
difficult to figure out.

3 Dealing with Block Noises
Preliminaries When noises are clustered as blocks, this prior knowledge is considered
to lead to an increased denoising performance. So far we could only control the number
of modified pixels which corresponds to the area of reconstruction. In this section we also
consider the length of the boundary of the identified pixels. For instance, consider the three
occlusion patterns in Figure 2. The pixel is white, when it is identified as noisy/occluded
and black otherwise. In the first case (left) the occlusion forms a block, in the second case
the letters “lp” and in the third case the pixels are randomly distributed. The covered area
is the same for all three cases.
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Figure 2: Three occlusion patterns with different degrees of having a block shape.

We will now define two measures of how much an occlusion pattern mismatches the block
shape. It is related to the length of the boundary. Note that optimal “block” shapes have
shortest boundaries. (It depends on the metric what will be optimal.)

We distinguish between two types of penalties: first, the ones which occur when a re-
constructed pixel is a neighbor of an untouched pixel (“boundary point”) and second, if a
reconstructed pixel is neighbor of another such pixel, but the corrections are in different
directions (“inversion point”). We have two definitions for our scores, which we will later
relate to the solution of our extended linear program. The differences between the two
scores S− and S+ are only in subtle details in how to count boundary points and inversion
points:

• Let N−
b be the number of pixels n which satisfy: (a) αn = 0 and there exists

m ∈ G(n) such that αm 6= 0 (outer boundary point) or (b) αn 6= 0 and for all
m ∈ G(n) holds αm = 0 (single pixel change). Let N−

i be the number of pixels
n with αnαm < 0 for at least one m ∈ G(n) and αnαm ≤ 0 for all m ∈ G(n)
(single inversion point). The first score is computed as S− := N−

b + 2N−
i .

• Let N+

b be the number of pixels n which satisfy: (a) αn = 0 and there exists
m ∈ G(n) such that αm 6= 0 (outer boundary point) or (b) αn 6= 0 and there
exists m ∈ G(n) with αm = 0 (inner boundary point). Let N+

i be the number of
pixels n with αnαm < 0 for at least one m ∈ G(n) (inversion point). Then the
second score is computed as S+ := N+

b + 2N+

i .

The main difference between the two scores is that S+ counts the length of the inner and
outer boundary, while S− only counts the outer boundary.

The Extended LP The question is how we can introduce these definitions into a linear
program, which somehow penalizes these scores. As we will show in the following propo-
sition, it turns out that it is enough to penalize the differences between neighboring α’s. We
introduce a new set of variables (the γ’s) which account for these differences and which
are linearly penalized. We control the contribution of the γ’s with the one of the α’s by
introducing a new parameter λ ∈ (0, 1) – if λ = 0, then the original LP is recovered:

min
γ≥0,α,ε≥0,β

λ

N

∑N

n=1
γn +

1 − λ

N

∑N

n=1
|αn| + νε (8)

∣

∣

∣

∣

xn + αn −
∑J

j=1
βjtj,n

∣

∣

∣

∣

≤ ε for all n = 1, . . . , N

|αn − αm| ≤ γn for all m ∈ G(n) (9)

We will show in the experimental part that these novel constraints lead to substantial im-
provements for block noises. The analysis of this linear program is considerably more
difficult than of the previous one. However, we will show that the ν-trick still works in a



generalized manner with some subtleties. We will show in the following Proposition that
LP (8) trades-off the area Np with the penalty scores S− and S+:
Proposition 2. Let Nc the number of crucial pixels and Np the number of updated pixels
(as before). Assume the optimal ε is greater 0. Then holds:

1. The λ-weighted average between area of the occlusion and score S− is not greater
than νN , i.e.

(1 − λ)Np + λS− ≤ νN (10)

2. If λ < 1

2+|G| , then the λ-weighted average between area of the occlusion and

score S+ is not smaller than νN minus 2Nc, i.e.
(1 − λ)Np + λS+ > νN − 2Nc, (11)

where |G| := maxn |G(n)|

Note that the slackness in (11) again only comes from the number of crucial points Nc.
The restriction λ < 1

2+|G| only concerns the second part and not the functioning of the LP
in practice. It can be made less restrictive, but this goes beyond the scope of this paper.
Due to space limitations we have to omit the proof. It is found in a technical report, which
can be downloaded from www.kyb.tuebingen.mpg.de/publications/pdfs/
pdf2420.pdf.

4 Denoising by QP and Robust Statistics
A characteristic of the LP method is that the `∞-norm is used as d1. But other choices are
of course possible. For example, when the squared loss is adopted as d1, the optimization
problem (3) is rewritten as

min
α,β

1

N

∑N

n=1

(

xn + αn −
∑J

j=1
βjtjn

)2

+ ν|αn|. (12)

This is a quadratic program (QP), which can also be solved by standard algorithms. In
our experience, QP takes longer time to solve than LP and the denoising performance is
more or less the same. Furthermore the ν-trick does not hold for QP. Nevertheless, it is
interesting to take a close look at the QP method as it is more related to existing robust
statistical approaches [2, 9]. The QP can partially be solved analytically with respect to α:

min
β

∑N

n=1
ρ
(

xn −
∑J

j=1
βjtjn

)

, (13)

where ρ is the Huber’s loss

ρ(t) =

{

t2

N
−Nν

2
≤ t ≤ Nν

2

|t| − Nν2

4
otherwise.

Thus, the on-manifold solution of (12) corresponds to the robust projection by the Huber’s
loss. In other words, α is considered as a set of slack variables in the robust projection. It
is worthwhile to notice another choice of slack variables proposed in [2]:

min
z,β

1

2γ

∑N

n=1
zn

(

xn −
∑J

j=1
βjtjn

)2

+ γ
1

2zn

. (14)

0 ≤ zn ≤ 1, n = 1, . . . , N.
Here the slack variables are denoted as z, which is called the outlier process [2]. Notice γ

is a regularization constant. Let us define gn = xn−
∑J

j=1
βjtjn. Then the inside problem

with respect to zn can be analytically solved, and we have the reduced problem as

min
β

∑N

n=1
hγ

(

xn −
∑J

j=1
βjtjn

)

(15)

where hγ(t) is again the Huber’s loss function: hγ(t) = t2

2γ
+ γ

2
if |t| < γ and |t| if |t| ≥ γ.

The outlier process tells one which pixels are ignored, but it does not directly represent
the denoised image. From the viewpoint of denoising, our slack variables α seem to make
more sense.



5 Experiments
We applied our new methods and the standard methods to the MPI face database [3, 4].
This dataset has 200 face images (100 males and 100 females) and each image is rescaled
to 44×64. The images are artificially corrupted by impulse and block noises. As impulse
noises, 20% of the pixels are chosen randomly and set to 0. For block noises, a rectangular
region (10% of the pixels) is set to zero to hide the eyes. We hide the same position for
all images, but the position of the rectangle is not known to our algorithm. The task is to
recover the original image based on the remaining 199 images (i.e. l.o.o. cross validation).

Our linear program is compared against the least squares projection and the robust pro-
jection using Huber’s loss (i.e. the on-manifold solution of QP). One could also apply the
non-convex robust losses for better robustness, e.g. Tukey’s biweight, Hampel, Geman-
McClure, etc [2]. On the other hand, we could also use the non-convex regularizers which
are “steeper” than the `1-norm for greater sparsity [5]. However, we will not trade con-
vexity with denoising performance here, because local minima often put practitioners into
trouble. As a reference, we also consider an idealistic denoising method, to which we give
the true position of noises. Here, the pixel values of noisy positions are estimated by the
least squares projection only with respect to the non-noise pixels. Then, the estimated pixel
values are plugged back into the original image. The linear manifold is made by PCA from
the remaining 199 images. The number of principal components is determined such that
the idealistic method performs the best. For impulse and block noise images, it turned out
to be 110 and 30, respectively.

The reconstruction errors of LP and QP for impulse noises are shown in Fig. 4. Here, the
reconstruction error is measured by the `2-norm between the images. Also an example of
denoising is shown in Fig. 3. Both in LP and QP, the off-manifold solution outperforms

a: original image b:noisy image
c: least squares 
   proj. (702)   

d: Off−Manifold 
      ν=0.4 (454)     

Figure 3: A typical result of denoising impulse noise. (a) An original face image. (b) The image
corrupted by impulse noise. (c) Reconstruction by the least squares projection to the PCA basis. The
number in (·) shows the reconstruction error. (d) Reconstruction by the LP (off-m.) when ν = 0.4.

the on-manifold one, which confirms our intuition that it is effective to keep most pixels
unchanged. Compared with the least squares projection, the difference is so large that one
can easily see it in the reconstructed images (Fig. 3). Notably, the off-manifold solutions of
LP and QP (cf. the solid curves in Fig. 4, left and right) performed significantly better than
the on-manifold solution of QP, which corresponds to the robust projection using Huber’s
loss (cf. the dashed curve in Fig. 4 right).
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Figure 4: Reconstruction errors of LP and QP methods for impulse noise. The solid and dashed lines
corresponds to the off-manifold and on-manifold solutions. The flat lines correspond to the least
squares projection and the unrealistic setting where the correct positions of noises are given.
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Figure 5: Reconstruction errors of the LP method for block noises.
(Left) the reconstruction error of the “plain” LP, where the block
constraints are not taken into account (λ = 0). The right plot
shows the improvement for increased λ and fixed ν = 1/2.

Figure 6: Illustration of Prop. 2:
For λ = 0.15 we compute the
lower and upper bound of νN for
different ν’s.

The results for block noises are shown in Fig. 5, where we again averaged over the 200 faces
(using l.o.o. cross validation for the construction of the PCA basis). In the left figure, we
measure the reconstruction error for various ν’s with fixed λ = 0, i.e. the block constraints
are not taken into account. As in the case with impulse noise, the error is smaller than
that of the least squares regression (PCA projection), and the minimum is attained around
ν = 1/2. Moreover, we investigated how the error is further reduced by increasing λ from
0. As shown in the right figure, we obtain a significant improvement. Actually, there is
not much room for improvements, since even the idealistic case where the position of the
occlusion is know is not much better.

An example of reconstructed images are shown in Fig. 7. Here we have shown variables
α and γ as well. When λ = 0, nonzero α’s appear not only in occluded part but also
for instance along the face edge (Fig. 7:e). When λ = 1/2, nonzero α’s are more con-
centrated in the occluded part, because the block constraints suppress a isolated nonzero
values (Fig. 7:h). In Fig. 7:i, one can see high γ’s in the edge pixels of occluded region,
which indicates that the block constraints are active for those pixels.

Finally we empirically verify Proposition 2. In Fig. 6 we plot the lower and upper bound of
ν as given in Proposition 2 for different values of ν. Observe that the difference between
lower and upper bound is quite small.

6 Concluding Remarks

In summary, we have presented a new image denoising method based on linear program-
ming. Our main idea is to introduce sparsity by detaching the solution slightly from the
manifold. The on-manifold solution of our method is related to existing robust statistical
approaches. Remarkably, our method can deal with block noises while retaining the con-
vexity of the optimization problem (every linear program is convex). Existing approaches
(e.g. [9]) tend to rely on non-convex optimization to include the prior knowledge that the
noises form blocks. Perhaps surprisingly, our convex approach can solve this problem to a
great extent. We are looking forward to apply the linear programming to other computer
vision problems which involve combinatorial optimization, e.g. image segmentation. Also,
it is interesting to explore the limitations of convex optimization, since – naturally – convex
optimization cannot solve every problem. Nevertheless, according to our experience in this
work, we feel that the power of convex optimization is not fully exploited.
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Figure 7: A typical result of denoising block noises (ν = 0.5). The numbers in (·) in (c),(d),(f),(g)
show the reconstruction errors. The image (d) shows the denoising result when the block constraints
are not taken into account (λ = 0, ν = 1/2). This result improves by imposing the block constraints
(λ = 1/2, ν = 1/4) as shown in (f) and (g), which are the off and on-manifold solutions, respectively.
The images (e),(h) and (i) show the parameter values obtained as the result of linear programming
(see the text for details).
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