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Abstract. In biological data, it is often the case that objects are described in two or more
representations. In order to perform classification based on such data, we have to combine
them in a certain way. In the context of kernel machines, this task amounts to mix several

kernel matrices into one. In this paper, we present two ways to mix kernel matrices, where
the mixing weights are optimized to minimize the cross validation error. In bacteria classification
and gene function prediction experiments, our methods significantly outperformed single
kernel classifiers in most cases.
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1. Introduction

In kernel machines such as support vector machines (SVM) [10], objects are

represented as a kernel matrix, where n objects are represented as an n� n positive

semidefinite matrix. Essentially the ði; jÞ entry of the kernel matrix describes the

similarity between ith and jth objects. Due to positive semidefiniteness, the objects

can be embedded as n points in an Euclidean space (i.e. the feature space) such that

the inner product between two points equals to the corresponding entry of kernel

matrix. This property enables us to apply diverse learning methods (e.g. SVM or

kernel PCA) without explicitly constructing a feature space [10].

In biological data, it is often the case that objects are described in several hetero-

geneous representations. For example, the regulatory relationship between genes are

represented as a gene network and a gene expression array at the same time [4, 13]. A

bacterium has several marker proteins which can be used for classification [15].

When kernel matrices are derived from two different representations, we have two

kernel matrices at the same time. In order to use a kernel machine, we have to com-

bine these matrices into one matrix. To this aim, several mixing methods have been

proposed recently. Pavlidis et al. [7] simply took the sum of two matrices obtained

from a phylogenetic profile [8] and gene expression. Hanisch et al. [4] summed two
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distances from a biological network and gene expression. Vert and Kanehisa [13]

recently performed kernel CCA to unify two kernel matrices.

In supervised classification problems, we have class labels in training data which

may be useful in kernel mixing. The drawback of existing approaches mensioned

so far is that they do not use class labels. In this paper, we propose a mixing scheme

specialized for supervised classification. For mixing kernel matrices, two kinds of

parametric models are adopted, i.e. linear mixture and nonlinear mixture. The para-

meters of these models (i.e., mixing weights) are optimized to minimize the cross vali-

dation error, which is commonly used as an accurate estimate for generalization error

(e.g., [2]). In bioinformatics, the support vector machine [10] is often used as a kernel

classifier (e.g., [7]), but we utilize the kernel Fisher discriminant analysis [6, 9]

because the cross validation error is represented in a closed form. In SVMs, the cross

validation error is only approximated by several bounds (e.g., [2]), which may some-

times be inaccurate [3]. We will derive the derivatives of the cross validation error

and the mixing weights are optimized in a gradient descent fashion.

We will actually perform experiments in two biological problems: the classification

of bacterial proteins and gene function prediction.

Automatic classification of bacteria genera is usually performed with comparing

specific proteins contained in the cells. The difference in amino acid sequences is

considered as the product of evolutionary changes, but most proteins are not suitable

for measuring the similarity between bacteria, because they are subject to abrupt and

irregular changes in the evolution process. It is known that the two proteins

gyrB and rpoD are especially stable and known to be good markers for measuring

similarity [15]. The classification experiments based on one marker protein are done

so far e.g., in [14, 15]. What we aim here is to improve classification performance by

mixing the kernel matrices of two marker proteins.

The gene function prediction is another important issue in biology [7]. The

problem is to find the function of proteins based on several kinds of data.

Whereas amino acid sequences offer important features for function prediction,

other data such as phylogenetic profiles and gene expression are also found to

be useful [7]. In the experiments shown later, we will combine the kernel matrices

derived from sequences and phylogenetic profiles. Here the gene expression was

not used because it is too noisy and did not help classification performance in

our problems.

2. Mixing Kernel Matrices

We consider the following supervised two class classification problem in the domain

X . Let fxi; yigni¼1; xi 2 X ; yi 2 f�1; 1g be the set of labeled training samples, and

xnþ1; . . . ; xnþm are the set of unlabeled test samples. Our task is to predict the class

labels ynþ1; . . . ; ynþm of test samples. Here it is assumed that the x-part of test

samples are known in advance, which is often referred to as the transductive setting

[10].
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Let us assume that c kernel matrices K½1�; . . . ;K½c� of size ‘� ‘ are available

(‘ :¼ nþm). Each kernel matrix can be decomposed as

K ½i � ¼
L½i � U ½i �

ðU ½i �Þ
> Z ½i �

� �
;

where L½i � is the kernel matrix between training samples and U ½i � is the one between

training and test samples. Z½i� is not used in supervised learning tasks.

2.1. TWO WAYS TO MIX

In mixing kernel matrices into one, we consider two ways: linear mixture and

nonlinear mixture. In linear mixture, the kernel matrices are combined as follows:

K ¼
Xc
i¼1

a2i K
½i �: ð2:1Þ

Here the mixing weights are squared (e.g. a2i ) to assure positive semidefiniteness of K.

The equation (2.1) is decomposed into blocks: L ¼
Pc

i¼1 a
2
i L

½i � and U ¼
Pc

i¼1 a
2
i U

½i �.

As will be shown in Section 2.4, the mixing weights ai are determined from L only, so

we do not need to know U ½i �’s in advance. Thus this method can as well be applied in

non-transductive cases, where test samples are completely unknown.

Let us define a matrix-valued invertible function f : <‘�‘ ! <‘�‘. Then (2.1) is

easily extended to the nonlinear mixture:

K ¼ f �1
Xc
i¼1

ai f ðK
½i �Þ

 !
:

There are various choices in f, but we especially focus on fðMÞ ¼ M1=2:

K ¼
Xc
i¼1

aiðK
½i �Þ
1=2

" #2
; ð2:2Þ

because of computational reasons, i.e. the calculation of f�1ðMÞ ¼ M 2 is easily done

with matrix-matrix product. Since K is iteratively computed with changing mixing

weights, it is desirable to keep the computation of f�1 as simple as possible. Another

advantage is that the mixing weights may be negative, because a squared matrix is

always positive semidefinite [10]. Thus, in contrast to the linear mixture, the nonlin-

ear mixture realizes more flexible way of mixing. Notice that we do not deny other

possibilities of f – they should be investigated in future works.

2.2. KERNEL FISHER DISCRIMINANT ANALYSIS

After the matrices are mixed, the kernel Fisher discriminant analysis (KFD) [6, 9] is

used for estimating labels of test samples. In training, the weight vector is obtained as

w ¼ ðLþ lIÞ�1yL;
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where l is the regularization parameter, and yL is the vector of given class labels. The
advantage of KFD in comparison to SVM is that the weight vector is described in a

closed form. The labels for test data are estimated as

ŷyU ¼ Cðw>UÞ;

where CðtÞ : <q ! <q is a vector valued sign function: when an element of t is

positive, it returns 1 in the corresponding element and otherwise �1. The problem

is how to determine a ¼ ða1; . . . ; acÞ
> and l such that the number of mismatches

between estimated labels and the underlying true labels (i.e., generalization error)

is minimized. Since the generalization error is unknown, we will use the cross valida-

tion error instead. Notice that the parameters a; l are redundant, because their scale
does not change the weight vector. We will fix l to 1 in the following.

2.3. CROSS VALIDATION ERROR

The cross validation error is computed as follows: In r-fold cross validation, the

training set is divided into r subsets. The classifier is trained with r� 1 subsets

and then tested with the remaining subset to obtain the classification error. This

process is repeated r times and finally the errors are averaged.

Let us divide the training set randomly in r sets of the equal size, and denote by Ij
the set of indices in jth subset and by �IIj the complementary set of Ij. Let us define �LLj

and �yyj as the kernel matrix and class labels corresponding to �IIj, respectively. The

weight vector for Ij is described as

wj ¼ ð �LLj þ I Þ�1 �yyj:

The test mismatches for Ij is denoted asX
i2Ij

Fð�yiw
>
j l

ð jÞ
i Þ

where l
ð jÞ
i is the kernel vector between ith object and all the objects in �IIj and

FðtÞ : < ! < is a step function: when t is positive, it returns 1 and otherwise 0. Thus

the cross validation error is described as

EðaÞ ¼
1

n

Xr
j¼1

X
i2Ij

Fð�yiw
>
j l

ð jÞ
i Þ:

2.4. OPTIMIZATION

Our task is to optimize EðaÞ in a gradient-descent manner. Since EðaÞ is not

differentiable, we first approximate the step function by a sigmoid function:

fðtÞ ¼
tanhðgtÞ þ 1

2
;

where we set g ¼ 10 here. In the following, we are going to calculate the derivatives
of the cross validation error. When the derivatives are obtained, EðaÞ can be
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optimized by any nonlinear optimization algorithm: Especially we recommend to use

some readily-available optimization software to avoid numerical problems. In the

experiments of later sections, we used MATLAB’s function fminunc, which is an

implementation of the sequential quadratic programming method.

The derivative of cross validation error is rewritten as

@E

@ak
¼
1

n

Xr
j¼1

X
i2Ij

@Eij

@ak
; k ¼ 1; . . . ; c; ð2:3Þ

where

Eij ¼ fð�yiw
>
j l

ð jÞ
i Þ

¼ fð�yi �yy
>
j ð

�LLj þ I Þ�1l
ð jÞ
i Þ:

Due to the chain rule, we have

@Eij

@ak
¼
Xn
s¼1

Xn
t¼s

@Eij

@Lst

@Lst

@ak
:

Thus we need to calculate
@Eij

@Lst
and @Lst

@ak
. Let us start with the latter because it is

simpler: For the linear mixture case (2.1), it turns out that

@Lst

@ak
¼ 2akL

½k�
st :

For the nonlinear mixture case (2.2), we have

@Lst

@ak
¼ 2

Xc
l¼1

alðs
½k�
s Þ

>s½l �t ;

where s½k�i is the ith column of ðK
½k�Þ
1=2. On the other hand, the calculation of

@Eij

@Lst
has

three options.

. When Lst corresponds to the uth element of l
ð jÞ
i ,

@Eij

@Lst
is obtained as the uth

element of the following vector:

@Eij

@l ð jÞi

¼ f 0
ð�yi �yy

>
j ð

�LLj þ IÞ�1l
ð j Þ
i Þ½�yið �LLj þ I Þ�1 �yyj�

where f 0
ðtÞ ¼ g

2 sech
2
ðgtÞ.

. When Lst corresponds to the ðu; vÞ element of �LLj,
@Eij

@Lst
is obtained as the ðu; vÞ

element of the following matrix:

@Eij

@Lj
¼ f 0

ð�yi �yy
>
j ð

�LLj þ IÞ�1l
ð jÞ
i Þ½yið �LLj þ IÞ�1 �yyj�½ð �LLj þ IÞ�1l

ð jÞ
i �

>:

. Otherwise, @Eij

@Lst
¼ 0:

Finally the derivative (2.3) can be computed by assembling all the results.
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3. Experiments

3.1. BACTERIA CLASSIFICATION

In this section, we perform a supervised classification experiment for classifying

bacteria based on two marker amino acid sequences: gyrase subuit B (gyrB) protein

and RNA polymerase sigma factor type D (rpoD). Gyrase is a type II DNA topoi-

somerase which is an enzyme that controls and modifies the topological states of

DNA supercoils. This protein is known to be well preserved over evolutional history

among bacterial organisms thus is supposed to be a better identifier for evolutionary

distance measurement than the popular 16S rRNA [5]. RNA polymerase sigma

factor is a subunit of RNA polymerase which plays essential role for RNA synthesis

in cells. The sigma factor recognizes promoter signal in a DNA sequence and points

where to start transcription. The sigma factors are classified into several categories

due to promoter sequences they recognize. rpoD (s70) is a major sigma factor
because promoters recognized by rpoD regulates many of genes in E. coli and other

bacteria. Although gyrB and rpoD play quite different roles, they both are crucial to

their organisms.

The dataset used in the experiment has 48 pairs of gyrB and rpoD amino acid

sequences of three genera (Pseudomonas luorescens:15, Pseudomonas marginalis:13,

Pseudomonas putida:20). For simplicity, let us call these genera as class 1–3, respec-

tively. For gyrB and rpoD, we computed the second order count kernel, which is the

dot product of bimer counts [12]. We performed the classification experiment with

four different approaches: gyrB alone, rpoD alone, linear mixture (i.e., Lmix), and

nonlinear mixture (i.e., NLmix). In order to compare these approaches, three two-

class problems (i.e., 1–2, 1–3, 2–3) are devised by coupling two classes. For super-

vised learning, the dataset is randomly divided to 80% training and 20% test sets,

and the experiment is iterated 20 times with different training/test splits. Notice that

we used the 5-fold cross validation error in all approaches. In single kernel cases,

only the regularization parameter is optimized to minimize the cross validation error.

The mean error rates are listed in Table 1. In the first two cases (i.e., 1–2 and 1–3),

the nonlinear mixture significantly outperformed single kernels and the linear

Table 1. Mean test errors of bacteria classification with standard deviation in ð�Þ. The
classes 1–3 correspond to Pseudomonas luorescens, Pseudomonas marginalis and
Pseudomonas putida, respectively. The labels ‘Lmix’ and ‘NLmix’ denote the linear

mixture of kernels and the nonlinear mixture of kernels, respectively. The best results
are highlighted with bold face.

gyrB rpoD Lmix NLmix

1–2 35.00 (21.40) 19.00 (18.89) 19.00 (21.00) 17.00 (21.79)

1–3 14.29 (13.11) 3.57 (7.86) 3.57 (6.35) 2.86 (5.86)

2–3 5.00 (7.84) 1.67 (7.45) 0.00 (0.00) 0.83 (3.73)
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mixture. In the last case (i.e., 2–3), the linear mixture was the best. In order to assure

that the optimization process did not stuck at notorious local minima, we will also

show the cross validation errors in Table 2. As seen in the table, the nonlinear

mixture always achieved smaller cross validation error than the linear mixture.

Probably the reason is that the nonlinear mixture provides more diverse choices because

it allows negative mixing weights.

3.2. GENE FUNCTION PREDICTION

The second experiment focuses on predicting the function of yeast genomes. We

utilize two kinds of data: phylogenetic profiles and amino acid sequences. The phylo-

genetic profile is a d-dimensional vectorwhich represents phylogenetic relations between

a gene of a certain organism and genomes of d different organisms. The ith element is

one if the ith genome has a homologous gene. Otherwise it is zero. We used the same

phylogenetic profiles used by Pavlidis et al. [7] (available at http://www.cs.colum-

bia.edu/compbio/exp-phylo/) where, instead of one and zero, negative logarithm

of the lowest E-value reported by BLAST version 2.0 is used (negative values corre-

spond to E-value >0). For each yeast gene, 24 bacterial genomes are used for con-

structing phylogenetic profiles. The gene expression data is also available from this

site, but we did not use it because it did not significantly help improving classification

performance (see [7]). The sequence data is obtained from Comprehensive Yeast

Genome Database (CYGD) (http://mips.gsf.de/proj/yeast/).

Classification experiments are carried out using gene functional categories from

CYGD. We especially focused on the category ‘Transport Facilitation’ and per-

formed classification with respect to its subcategories: ion transporters, C-compound

and carbohydrate transporters, amino-acid transporters, transport ATPases, ABC

transporters. We denote them as class 1 to 5, respectively. There are other subcate-

gories, but we excluded them because the number of genes is too small. Notice that

we could not use the genes whose sequence or phylogenetic profile is not included in

the databases. As a result, the number of genes in each class is listed as 60, 32, 22, 36

and 16. As in the previous section, we devised 10 problems by coupling two classes.

The dataset is randomly divided to 80% training and 20% test sets, and the experi-

ment is iterated 20 times with different training/test splits. We again used the 5-fold

cross validation error here.

Table 2. Cross validation errors of bacteria classification with standard
deviation in ð�Þ.

gyrB rpoD Lmix NLmix

1–2 31.85 (9.81) 16.36 (5.58) 16.32 (5.72) 9.68 (6.72)

1–3 8.67 (3.12) 4.66 (3.31) 5.23 (3.35) 3.73 (2.33)

2–3 6.69 (2.12) 1.03 (1.56) 0.43 (0.43) 0.34 (0.40)
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The normalized dot product is adopted for the kernel function of phylogenetic

profiles:

Kðx; x 0Þ ¼
x>x 0

kxkkx 0k

where x and x 0 denote the vector of phylogenetic profile. For gene sequences, we

used the second order count kernel as in the previous experiment. In order to show

that our methods work with more than two matrices, we additionally constructed the

second order polynomial kernels [10] for both phylogenetic profiles and sequences:

K 0
ij ¼ ðKij þ 1Þ

2:

Finally we have four kernel matrices in total.

Table 3. Test errors in gene function prediction. The classes 1–5 corresponds to ion trans-
porters, C-compound and carbohydrate transporters, amino acid transporters, transport AT-
Pases, ABC transporters. ‘Phy’ and ‘Seq’ denote the kernel matrices of phylogenetic profiles

and gene sequences, respectively. ‘Phy2’ and ‘Seq2’ are the second order polynomial kernels
of ‘Phy’ and ‘Seq’, respectively.

Phy Seq Phy2 Seq2 Lmix NLmix

1–2 17.22 (7.41) 19.17 (11.88) 15.00 (8.28) 17.78 (9.64) 12.50 (8.62) 14.44 (7.30)

1–3 13.75 (6.91) 9.06 (7.71) 3.75 (3.74) 9.38 (7.72) 4.38 (4.11) 4.38 (4.11)

1–4 42.11 (19.01) 39.21 (12.13) 43.68 (11.21) 45.00 (10.31) 43.95 (12.23) 42.63 (12.54)

1–5 28.33 (9.64) 23.33 (9.05) 7.67 (6.22) 23.67 (8.78) 7.67 (5.83) 8.33 (5.67)

2–3 5.00 (8.89) 7.50 (8.51) 6.00 (7.54) 7.50 (8.51) 3.00 (5.71) 4.50 (6.05)

2–4 19.23 (11.02) 17.69 (8.68) 8.85 (7.60) 15.00 (7.68) 6.92 (7.01) 8.46 (8.24)

2–5 10.56 (7.63) 10.56 (11.10) 5.00 (7.63) 7.78 (8.90) 5.00 (6.72) 3.33 (6.35)

3–4 14.09 (12.33) 5.00 (5.50) 2.73 (5.19) 3.64 (5.44) 2.73 (5.19) 3.64 (6.19)

3–5 3.57 (6.35) 0.00 (0.00) 3.57 (6.35) 0.00 (0.00) 3.57 (6.35) 3.57 (6.35)

4–5 11.00 (9.12) 23.50 (18.14) 3.50 (4.89) 12.50 (12.09) 3.00 (4.70) 4.00 (5.98)

Table 4. Cross validation errors in gene function prediction.

Phy Seq Phy2 Seq2 Lmix NLmix

1–2 24.77 (8.35) 18.92 (8.60) 15.95 (6.35) 18.47 (8.05) 11.85 (6.39) 9.68 (6.49)

1–3 17.23 (7.13) 25.26 (5.62) 9.16 (4.92) 21.78 (5.81) 7.75 (4.43) 6.61 (4.46)

1–4 40.07 (10.21) 32.39 (8.41) 40.29 (10.27) 33.85 (9.06) 30.51 (7.78) 26.64 (8.51)

1–5 22.88 (8.93) 19.65 (7.19) 13.61 (4.76) 18.28 (6.87) 12.60 (4.78) 10.61 (5.12)

2–3 6.66 (4.81) 16.04 (11.24) 7.42 (4.93) 16.36 (11.31) 6.08 (4.53) 3.97 (4.22)

2–4 20.22 (9.58) 16.40 (6.88) 15.68 (8.98) 16.73 (6.80) 9.41 (5.51) 8.01 (4.72)

2–5 7.00 (7.28) 15.96 (8.57) 5.66 (5.24) 14.67 (8.89) 5.90 (5.76) 4.66 (4.06)

3–4 10.04 (6.05) 9.86 (7.92) 7.48 (5.36) 10.62 (7.92) 4.64 (5.96) 2.64 (4.35)

3–5 8.50 (7.51) 10.97 (9.64) 8.29 (6.97) 10.92 (9.53) 5.39 (5.20) 4.94 (5.15)

4–5 24.57 (11.01) 30.66 (10.85) 14.40 (9.45) 27.86 (10.03) 13.50 (8.00) 8.28 (7.46)
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The test errors are listed in Table 3. The mixing approaches outperformed single

kernels in 6 out of 10 experiments. In 1–3, 1–5 and 3–5, one of the kernels performed

exceptionally well, so mixing with other ‘poor’ kernels did not lead to improve

performance. In 1–4, the error rates of all kernels are very poor (i.e., close to 50%),

so the comparison between error rates is not really meaningful.

When looking at the cross validation errors (Table 4), the nonlinear mixture

achieves the best result in all experiments. Thus, in most experiments, the best

method in cross validation error was not the best in test error. This phenomenon

may be termed as ‘overfitting to cross validation error’. When the number of samples

is small, the cross validation error is likely to have such a large variance that its beha-

vior is significantly different from test error. As a result, minimizing the cross vali-

dation error becomes misleading. This problem is not unique to cross validation

and virtually every model selection criterion suffers from large variance in small sam-

ple cases [1]. If some countermeasure is taken against overfitting (e.g., feature selec-

tion or regularization on cross validation error), the test error of nonlinear mixture

would get better. However it is not tried yet at this point.

4. Conclusion

In this paper, we proposed two ways to mix kernel matrices to minimize the cross

validation error and applied them to biological experiments with promising results.

Here we only dealt with two class problems to keep the computation of cross valida-

tion error reasonably simple. The extension to multiclass problems is in principle

possible but the computation of cross validation error and its derivatives would be

more complicated.

In gene function prediction, we encountered the problem of overfitting to the cross

validation error, because of small sample sets and high dimensionality. Such difficult

situations have seldom been considered in the conventional statistical community,

but bioinformatic applications are recently urging to develop new robust approaches

(e.g., [11]). The kernel mixing is regarded as a new challenging problem, for which

robust methods are definitely required.

Our methods can be applied to any type of kernels derived from any data. In

future works, we are interested in applying our methods to the diffusion kernels

derived from metabolic network [13]. Gene expression [4] is an especially interesting

target as well.
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