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Abstract

We construct an alternative geometry framework for Support Vec-
tor Machine (SVM) classifiers. Within this framework, separat-
ing hyperplanes, dual descriptions and solutions of SVM classifiers
all are constructed clearly by a pure geometry fashion. Now all
kinds of SVM formulations and their dual descriptions including the
arbitrary-norm cases are only different expressions of the underly-
ing common geometry essentials. Compared with the optimization
theory in SVM classifiers, we don’t need redundant confused com-
putations any more. Instead, every step in our theory is guided
by elegant geometry intuitions. Our framework can make people
understand SVM in a totally visual fashion. In addition, it is also
helpful to expose the correlations between SVM and other learning
algorithms.

1 Introduction

The basic ideas of SVM are very intuitive [9, 10]. If the data is linearly separable,
the strategy of SVM is to separate the data with the maximal margin hyperplane.
While, if the data isn’t linearly separable, slack variables are introduced to allow
the margin constraints to be violated and the data is separated with the so-called
soft maximal margin. These strategies are implemented by reducing them into
convex optimization problems, that is minimizing convex functions under linear
inequality constraints. Within the framework of constrained optimization theory,
these optimization problems are then converted to their alternative dual forms,
which are easier to be solved than the primal problems. So the dual transform is
an important concept for understanding the mechanism of SVM. But in fact it is
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almost back magic for many people to change from the primal to dual presentations
[1].

Recent researches have shown that there exist nice geometry interpretations for the
dual formulations in SVM that can make people grasp visually this key idea [1,
2, 4]. In geometry, for the separable case finding the maximum margin between
two classes is equivalent to finding the nearest neighbors in the convex hulls of
each class; for the inseparable case finding the soft maximum margin between two
classes is equivalent to finding the closet points in the so-called reduced convex hulls
of each class. But these geometry intuitions are proved within the framework of
optimization theory. So the proofs are still back magic for many people. It seems
that the geometry explanations emerge suddenly from a series of computations.

In this paper, we construct an alternative geometry framework for SVM classifiers
motivated by the related researches [1, 2, 4, 7]. Within this framework, separating
hyperplanes, dual descriptions and solutions of SVM classifiers all are constructed
clearly by a pure geometry fashion. Now all kinds of SVM formulations including
the arbitrary-norm cases and their dual descriptions are only different expressions
of the underlying common geometry essentials. Compared with the optimization
theory in SVM classifiers, we don’t need redundant confused computations any
more. Instead, every step in our theory is guided by elegant geometry intuitions.
So our framework can make people understand SVM in a totally visual fashion.
In addition, it is also helpful to expose the correlations between SVM and other
learning algorithms, such as boosting [8].

This paper is organized as follows. Section 2 introduces some preliminary mathe-
matical notions. Section 3 discusses arbitrary-norm separating hyperplanes. Section
4 discusses the dual problems in arbitrary-norm SVM classifiers. Finally, section 5
investigates solutions of 2-norm SVM classifiers. In this case, the solution has the
best geometry intuition.

2 Preliminary

In this section, we introduce some mathematical notions. For more details, you can
refer to the book [5, 6].

A normed linear space is a vector space X on which there is defined a real-valued
function which maps each element z in X’ into a real number ||z||. The norm satisfies
the following axioms:

1. ||z|]| > 0 for all z € X,||z|| = 0 if only if z = 6.

2l gl < |lz] + yll for each z, y € .

3. ||az|| = |a| - ||z|| for all scalars o and each z € X.

If A, B are subsets of a normed vector space, their distance is d(A, B) = inf ||z —y||,
v €A v €B.

A Linear functional f on a normed space is bounded if there is a constant A such
that |f(z)| < A||z]| for all x € X. The space of all bounded linear functionals on
X is called the normed dual of A and is denoted A*. The norm of f € X™* is
[ 1] = inf{X: |f(x)] < Al|z|], for all z € X'}. Generally, we let * denote an element
in X*, and employ the notion (z,z*) for the value of the functional z* at a point
x € X. By the norm definition we have (x,z*) < ||z||||z*|.

The translation of a subspace is said to be a linear manifolds. A hyperplane H in
a linear vector space XA is a maximal proper manifolds, that is, a linear manifolds
H such that H # X, and if V is any linear manifolds containing H, then either
V =X or V = H. Given a hyperplane H, there is a linear functional z* on X and



a constant ¢ such that H = {z : (x,2*) = ¢}. Conversely, if 2* is a nonzero linear
functional on X, the set {z : (z,z*) = ¢} is a hyperplane in X'.

A real inner space is a real linear vector space X together with an inner product,
which is a map from X x X to R and denoted by (x,y) where z,y € X. The inner
product satisfies the following axioms:

L (z,y) = (y,2).

2. (x+y,2) =(2,2) + (y,2)-

3. (Az,y) = Mz, y).

4. (z,z) >0 and (z,z) =0 if and only if z = 6.

We say « is perpendicular to y when (z,y) = 0. y/(z,y) is denoted by ||z|| because it
is indeed a norm (2-norm). For all z, y in an inner product space, |(z, y)| < ||z||||y||-
This is called Cauchy-Schwarz inequality. Equality holds if and only if z = Ay or
y = 6. A complete real inner space is called a real Hilbert space. If z* is an element
in the dual space H* of a Hilbert space H, there exists a unique vector € H such
that for all y € H, (y,z*) = (y, ). Furthermore, we have ||z*|| = ||z||.

3 Hyperplane

In this section, we discuss arbitrary-norm separating hyperplanes.

Theorem 3.1 Let x9 be a point in a real normed vector space X', and H a hyper-
plane {z : (z,z*) = ¢}, ©* € X*. Then the distance from z¢ to H is

* p—
d= inf [z — o = E0220 ¢l
c€H [|z*||
Especially, d = |c| when ||z*|| =1 and z = 6.
If the infimum on the left is achieved by some point z; € H and if (z¢,z*) > ¢,
then z* is aligned with zo — x1, i.e. (o — x1,2*) = ||xo — z1||||z*]|-
Proof. For simplicity, let © = 6 science the general case can then be deduced by
translations. Thus we must show that
]
=]
Let H = z + M where M is maximal proper subspace of X'. Elements of X are

uniquely representable in the form ¢ = az +m, with m € M. Let (z,2*) = ¢, so
that H = {z : (z,2*) = c}. We have

d= inf ||y|| =
poaldl

:
o = sap BTN o
el oz ]

B U I
afll+ 2] = it e + 2]

Note d = inf ||z + 2|, so d = |c|/||=*]|.
If the infimum on the left is achieved by some point z; € H, and if (xo,z*) > ¢,
then, by the above result, we have
(xo,2*) — ¢
[l]]
(xo,z*) — (x1,2%) (0 — T1,2%)

[l*| el

d = |lzo—a1] =

So (zo — @1,2") = [|wo — @1 l[Jz”|l.
This proves our theorem.



Remark 1 In Hilbert space H, for any «* € H*, there exists a unique vector w € ‘H
such that [|w|| = ||z*|| and (z,w) = (z,z*) for all z € H. In the above theorem, by
substituting w for z*, we have (o — z1,w) = ||zo — z1]|||w||. Equality holds if and
only if xg — x1 = pw, pu > 0. So for any m € M, we have (xg — x1,m) = (pw, m) =
u{w,m) = 0. This means zo — z; is perpendicular to M. This situation is sketched
in Figure 3.1.

X0

X1
H

Figure 3.1 Minimum distance: from a point to a hyperplane

Remark 2 In an arbitrary normed space, there does not have a unique solution
possibly. We consider a simple two-dimensional example[]. Let X’ be the space of
pairs of real numbers z = (&, &) with ||z|] = max;—1, 2 |¢;|. Let H be the subspace
H = {z : & = 0}, and consider the fixed point ¢ = (2,1). The distance from z to
H is obviously 1, but any vector m in the subset {z : 1< & <3, & =0} of H
satisfies ||z — m|| = 1.

Remark 3 The set of all the nearest neighbors in H of z¢ is convex. Let 21 and z,
be two nearest neighbors, and z = (1 — A)zy + Aze, 0 < A < 1. Obviously =z € H,
s0 ||zg — z|| > d. In addition, by the triangle inequality we have

lzo —zll = llzo = [(1 = A)z1 + Azz]|
= (T =M(zo = 21) + Az — 22
< (I =Nllwo — 21| + Allzo — 22|
= (1-Nd+XM=d.
So ||lzg — z|| = d, i.e., = is one of the nearest neighbor of xy. This proves our

statement.

Example Let p be a real number of 1 < p < oo.The space [, consists of all
sequences of scalars {£1,&a, ...} for which

oo
Z|fi|p < 0.
i—1

The norm of an element x = {;} in [, is defined as
o 1
lzll, = Q_ l&17)7-
i=1

Let g be the positive number (necessarily > 1) such that
1 1
-+ - = ]_7
p q



and call ¢ the dual exponent of p. The dual space of I, is 4[5, 6].
The space l, consists of bounded sequences. The norm of an element z = {¢;} is
defined as

|||l = sup |&]-
K3

Let z9 € I,(1 < p < 00,if p =1, we take ¢ = 00) be any point which is not on the
hyperplane H = {z : (z,w) = 0} where w € [,. Then the distance from zo to the
hyperplane H is

The dual space of I is I1[5, 6].

(o, w)
l[wllg

You also can get this result by a series of computations based on Karush-Kuhn-
Tucker optimality criterion|[7, 8 ].

d = inf |fo -z, =

Theorem 3.2 Let X' be a real normed vector space and X'* is its dual space. Given
the two parallel hyperplanes Hy = {z : (z,z*) = ¢1} and Hy = {z : (z,2*) = 2}
where z* € X*, ¢1,c2 € IR and ¢; # ¢z, then the distance between H; and Hj is

. |01 - Cz|

d= inf ||z —y||=—F——.

inf -y = S
yEHy
If the infimum on the left is achieved by g € Hy,yo € Hy and if ¢; > ¢o, then z*
is aligned with z¢ — yo, i.e. (o — Yo, z*) = ||zo — yoll||z*||-

Proof. Let H ={z:z=a1 — 22,1 € Hy,22 € Hy}. Then d = inf{||z|| : z € H}.
Note H = {z : |{z,2*) = ¢; — ¢}, i.e. H is still a hyperplane. By theorem 3.1 we
have d = |c1 — co|/||z*]].
If the infimum on the left is achieved by zg € H; and yo € Hs, i-e., (xo,2*) = ¢1
and (zg,z*) = ¢z, and if ¢; > co, then
C1 — C2
d = |lzo—yoll = T
[|lz*|
(zo,2*) — (Yo, ") _ (o — Yo, x*)
llz*|l llz*|l

Note d = ||zo — yol|, we have (xo — yo,z*) = |0 — yol|||x*||-
This proves our theorem.

Example 1 Let (1,y1), (€2,92),- .-, (Tn,yn) € R™ x {—1,1} be our training sam-
ple. Let A={z;:y; =1,1<i<mm<n}and B={z;:y; = —1,m <i <n}.
There exists a w € IR™ (the dual space of IR™ is still IR")and a number b
such that (z,w) > b+ 1 for all z € A and (z,w) < b—1 for all z € B.
Then Hy = {z : (z,w) = b+ l}and H; = {z : (z,w) = —b— 1} are the
two support hyperplanes. By this theorem the distance between H; and H is
[(=b4+ 1) — (=b—D)|/||lw|l2 = 2/||w]|]2. So maximizing the distance of the the two
support hyperplanes is to solve the following optimization problem:

. 1 .
min  Slwlly
subject to yi{zg,w)y +b)>1 i=1,2,...,n.

This is the standard primal SVM 2-norm formulation[9, 10].

Example 2 Let (z1,y1), (€2,Y2), .-, (Zn,yn) € X x {—1,1} be our training sample
where X is a [, space. Let A={z;:y; =1,1<i<m,m<n}and B={z;:y; =
—1,m < i < n}. There exists a w € X*, ||w||; = 1 (note X* is a l; space) and a



number p > 0 such that (z,w) > p for all z € A and (x,w) < —p for all x € B. Let
H, ={z:{z,w) =p}and Hy = {z: (x,w) = —p}. By this theorem the distance
between H; and Hs is |p — (—p)|/||w||lq = 2p. So maximizing the distance of these
two separating hyperplanes is to solve the following optimization problem:

max p
pEIRy

subject to yi({zs,w)) >p i=1,2,...,n
llwlly = 1.

You also can get this result by a series of computations based on Karush-Kuhn-
Tucker optimality criterion[7, 8].

4 Duality

In this section we discuss the dual problems in arbitrary-norm SVM classifiers.

Let K be a convex set in a real normed vector space X'. The functional hg (z*) =
SUp,ex (%, 2*) defined on X* is called the upper support functional of K and the
hyperplane H = {z : (z,2*) = hg(z*)} a upper support hyperplane for K. Cor-
respondingly, the functional Ik (z*) = inf,ecx (x,2*) is called the lower support
functional and H = {z : (z,z*) = lx(z*)} a lower support hyperplane.

Theorem 4.1 (Minimum Norm Duality) Let 2o be a point in a real normed vector
space X and K is a convex set and let d denote its distance from the convex set K;

then o (g
d = inf ||zg — z|]| = max (o, 2") = hrc(a")]
2% L S ]

where the maximum on the right is achieved by some z] € A™*.
If the infimum on the left is achieved by some point x; € K, then 7 is aligned with
zo — o1, L. (zo — w1, 77) = [|z0 — @ llla7]].

Proof. For simplicity we take x¢ = @ since the general case can then be deduced by
translation. Thus we must show that

d = inf ||z|| = max —hi(@”)
crc 171 = BB T

We first show that for any z* € X'*, we have d > —hg (2*)/||z*||. For this we may
only consider {z* : h(z*) < 0}. Obviously, if hx(z*) < 0, then the hyperplane
H={z: (x,z*) = hg(z*)} separates K and 6.
Let S(r) = {z : ||z|| < r}. For any z* € A* with hg(z*) < 0, let r9 be the
supremum of the r for which the hyperplane {z : (z,z*) = hx(z*)} separates K
and S(r). Obviously, we have hg (z*) = inf e x- (x,2") = —rol|z*|| > —d||z*|| (note
that To S d)
On the other hand, since K contains no interior points of S(d), there is a hyperplane
separating S(d) and K. Therefore, their is a z7 € X, such that —hg(27) = d||z7]|.
Thus the first part of this theorem is proved.

To prove the second part on alignment, suppose that z; € K, ||z1|| = d. Then
(v1,27) < hg(z]) = —d||27||. However, —(z1,27) < |21fl[|#1]] = dl|27]|. Thus
—(x1,27) = ||z1]]||=7|| and 7 is aligned with —z;.

Remark 1 This theorem is adopted from the book[6] with minor variations. For
the convenience of understanding the following materials, the proof of this theorem
is also contained.



Remark 2 Some complements on the separation theorem used in the above proof.
Let A and B be the subsets in a real normed vector space X'. We say they are
linearly separable if there is a * € A such that

sup (x,z") < inf (z,z").
sup (z, ") < inf (e,2°)
In other words, there exists a £* € A* and a number v € IR such that (z,z*) > v
for all z € A and (z,z*) < 7 for all z € B. When these inequalities hold strictly, we
say they are strictly linearly separable. If A and B are convex, and A has interior

points and B contains no interior point of A, then A and B are linearly separable[5,
6].

Remark 3 This theorem is very intuitive in geometry. In fact, it means that the
minimum distance from a point to a convex set K is equal to the maximum of the
distance from the point to support hyperplanes separating from the point and the
convex set K. This situation is sketched in Figure 4.1.

Figure 4.1 Maximal margin duality: from a point to a convex

Theorem 4.2 Let K; and K, are the complete, disjoint and convex sets in a real
normed vector space X and let d denote the distance between K; and K,; then

l *)—h *
d= inf ||y —z|| = max 16 (27) = iy (27)
yEK] TreX* ||.27*||

z€Kq

where the maximum on the right is achieved by some z§ € A™*.

If the infimum on the left is achieved by yo € K; and zp € K>, then z is aligned
with yo — 20, i.e. (Yo — 20,25) = llyo — 2o/l -

Proof. Let K ={z:z=2-y, y € K1, z € K»}. Obviously, K is still a convex set.

Furthermore, K1 N Ks = ¢ since K1 and K, are disjoint, so # is not the element of
K. By theorem 4.1, we have

—h (z*
d = inf ||z|| = max ﬂ
A
Note that
nf Jloll = inf [ly - 2l|,
2€Ko
and

—hi (27) = Ui, (27) = D, (7).



Thus we have proved the first part of this theorem.

To prove the second part, suppose that yo € K; and 2z € Ko, ||yo — 20|| = d. Let
ZTo = 2o — Yo. By theorem 4.1, we have —(zo — yo, z8) = —{(x0,z§) = ||zol|||zd]| =
llz0 — yolll|lzg]|- So z§ is aligned with yo — zo.

Remark This theorem is very intuitive in geometry. In fact, it means that the
minimum distance between the two convex sets Ky and K is equal to the maximum
of the distance between a pair of parallel support hyperplanes separating K; and
K, one from the other. This situation is sketched in Figure 4.2.

K1

K2

Figure 4.2 Maximal margin duality: from a convex to another one

Example 1 Let (z1,y1), (z2,92), .-, (Tn,yn) € R™ x {—1,1} be our training sam-
ple. Let A ={z; :y; = 1} and B = {x; : y; = —1}. Let co(A4) and co(B) are the
convex hulls of A and B respectively. Suppose that w € R", (z,w) > a for all
r € Aand (z,w) < B for all € B. Then l.o4)(w) = «, and heop)(w) = 5.
The problem of maximizing [l.o(a)(w) — heo(B)(w)]/||w]|2 can be written as the the
following optimization problem:

. 1 2
min Sflwllz = (e —6)
subject to (z;,w) > a for any z; € A

(z;,w) < B for any z; € B.
By theorem 4.2 its dual problem is

. 1
min 5”2901’614“1'-7:1' — Y., eBVIT;]|

u,v
subject to Yu; =1, Yv; =1
u; > 07 v; > 0.

This example shows that for the separable case finding the maximum margin be-
tween two classes is equivalent to finding the nearest neighbors in the convex hulls
of each class.

Example 2 Now suppose that A and B in the above example are inseparable. Let
0<pu<l Let R(A, p) ={z: 2 =2uz;, Yu; =1, 0 < u; < p, z; € A} and
R(B, p) ={z:x = Zvjz;, Yv; =1, 0<v; < p, ; € B}. R(A, p) and R(B, p)
are called the reduced convex hulls of A and B respectively. Suppose that R(A, u)
and R(B, p) are separable now. So there exists w € IR™ such that (z,w) > «a for
all z € R(A, p) and (z,w) < B for all © € R(B, ). Then we have

(z;,w) > a—¢&;, for any z; € A



where & = 0if © € R(A, p) or else & = a — (x;, w). Analogously,
<mi7w> S B + 1, for any z; € B
where §; =0 if x € R(B, p) or else n; = (x;,w) — . Obviously, & >0, n; > 0. So
we have
(in,U)) >a— ,U’EwiEAfiv ) for any x; € R(A7 /’L)
(zi,w) < B+ pXyepmi, for any z; € R(B, p).
This means
lR(/Lu) (w) = a— p¥yeali
hpB,u(w) = B + pe,enmni-
So maximizing
[[r(aw (w) = hrs,p (W)]/|lwll2
is equivalent to maximizing
[(0 = pEeica&s) — (B + pZaemi)l/||lwll2-
The latter can be be written as the the following optimization problem:
. 1
min p(E6 -+ In) + g llwll; - (@ = B)
subject to (xi,w) > a—§&;, forany z; € A
(xi,w) < B +mn;, for any x; € B.
By theorem 4.2 the former can be be written as the the following optimization
problem:

min  |Scauim — Sacnvizi]
subject to Su; =1, Yv; =1
0<wu; <p, 0<v <p.
This example shows that for the inseparable case finding the maximum soft margin

between two classes is equivalent to finding the closet points in the reduced convex
hulls of each class.

Remark The arguments in the above two examples are firstly proposed in Ben-
nett’s paper[1l]. But she got them by a series of computations based on Karush-
Kuhn-Tucker optimality criterion.

5 Solution

In this section we discuss the solution of SVM classifiers in Hilbert spaces.

Theorem 5.1 Let K; and K, are the complete, disjoint and convex sets in a
real Hilbert space H. Let d(K;, K») = ||x1 — z2|| where z; € Ky, x93 € Ko . Let
w = x1 — X2, (T1,w) = c1, (T2, w) = 2,61 > 2. Let Hy = {z : (z,w) = ¢;} and
Hy = {z : (x,w) = c1}; then: (1) the distance between H; and H, is just the
distance between K; and K»; (2) H; is a lower support hyperplane of K; and H»
is a upper support hyperplane of Ks.

Proof. We firstly show the first part. By theorem 3.2, we have

d(Hy, Hy) ¢L—C _ (x1,w) — (T2, w)

= [lwl] = d(Ky, Ky).



To prove the second part, suppose that there were a point # € K for which (z,w) <
c1. Let w = Az + (1 — N)z1, A € IR, then
[l — a|®
= A+ (1—=Nzxy —x2, Az + (1 = N)a1 — x2)
Ma —x1) + (w1 — 22), M — 1) + (1 — 22))

lz1 — zo||® + N2||z — z1||* + 2\ (z — 21, 21 — 22).

Let

Ao = 27@71 ;z:,w)'
|z — a1 |]?
Since (z1,w) = ¢; and (z,w) < ¢1, we have Ag > 0. Let Ay = min{Ag, 1}. Then,
for any A € (0, A1), we have |[|u — x2]| < ||x1 — 22]||. This contradicts the condition
that d(K7, K2) = ||z1 — 2|, since, by the convexity of K;, we have u € K;. Hence
(z,w) > ¢ for all z € K;. Analogously, we have (z,w) < ¢y for all z € K.
This proves our theorem.

Remark In geometry, this theorem means that if z; € K; and 1 € Ky are a
pair of points that are closest to each other, then the hyperplane bisecting, and
orthogonal to, the line segment between x; and z- is a separating hyperplane for
K, and K, with the maximal margin. This situation is sketched in Figure 5.1.

Figure 5.1 The maximal margin separating hyperplane

Theorem 5.2 Let K; and K, are the complete, disjoint and convex sets in a real
Hilbert space H. Then there is one and only one separating hyperplane for K7 and
K, with the maximal margin.

Proof. By theorem 5.1, there exists one separating hyperplane for the convex sets
K, and K5 with the maximal margin. Now we only need to show the uniqueness
of such hyperplane. Suppose that z; € K;, x5 € Ko, w € H satisfy

lK1 (U)) - th (U))
[l '

d(Ky, Ks) = |lz1 — 22| =

Let H; and Hs be the lower and upper support hyperplanes of the convex sets
K, and K, respectively decided by w, i.e. Hy = {z : (z,w) = lg,(w)} and

Hy, = {z: (z,w) = hg,(w)}. By theorem 4.2 we have (1 — 2, w) = ||z1 — z2||||w]|
Let wg = x1 — w2. By Cauchy-Schwarz inequality, there exists a € IR such that
w = awgy. Then Hy = {z : (z,awy) = lk,(awo)} = {z : (x,wo) = Ik, (wo)}.

Analogously, Hy = {z : (z,wo) = hxk,(wo)}. These mean H; and H, are decided



only by wy.
This proves our theorem.

Remark Note that wg doesn’t depend on the choice of the nearest neighbors in
K, and K. In fact, suppose that z1, y1 € K1, x2, y2 € K5 satisfy

d(K1, Ks) = ||lz1 — z2|| = [Jy1 — y2ll,

then we have 1 —a2 =y1 —y2. Let C ={z:z =2 —y,x € A,y € B}. To prove
our statement, we only need to prove that there exists only one element in ¢ which
has the least norm. Let d denote the least norm. Suppose that there are z1,22 € C
that satisfy||z1|| = ||z2|| = d. Then

lz1 = z2ll” = (21— 22,21 — 22)
= 2zl + 2l — Iz + 2
= 2+ 2d% - 22||¥||.
Since (21 + 22)/2 € C, we have
Z1 + 29
— = >d
12220
This means ||z; — 2z2]] < 0. But we always have ||z; — z2|| > 0. So ||z1 — 22|| = 0, i.e.

z1 = zo. This proves our statement.

6 Conclusion

We construct an alternative geometry framework for SVM classifiers. Within this
framework, separating hyperplanes, dual descriptions and solutions of SVM clas-
sifiers all are constructed clearly by a pure geometry fashion. Now all kinds of
SVM formulations and their dual descriptions including the arbitrary-norm cases
are only different expressions of the underlying common geometry essentials. Com-
pared with the optimization theory in SVM classifiers, we don’t need redundant
confused computations any more. Instead, every step in our theory is guided by
elegant geometry intuitions. So our framework can make people understand SVM
in a totally visual fashion. In addition, it is also helpful to expose the correlations
between SVM and other learning algorithms.
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