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Learning from Examples

• Input space X , and output space
Y = {1,−1}.

• Training set
S = {z1 = (x1, y1), . . . , zl = (xl, yl)} in
Z = X × Y drawn i.i.d. from some unknown
distribution.

• Classifier f : X → Y .
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Transductive Setting

• Input space X = {x1, . . . , xn}, and output
space Y = {1,−1}.

• Training set
S = {z1 = (x1, y1), . . . , zl = (xl, yl)}.

• Classifier f : X → Y .
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Intuition about classification: Manifold

• Local consistency. Nearby points are likely
to have the same label.

• Global consistency. Points on the same
structure (typically referred to as a cluster or
manifold) are likely to have the same label.
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A Toy Dataset (Two Moons)
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(a) Toy Data (Two Moons)
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(b) SVM  (RBF Kernel)
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(c) k−NN
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(d) Ideal Classification
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Algorithm

1. Form the affinity matrix W defined by Wij =

exp(−‖xi − xj‖2/2σ2) if i 6= j and Wii = 0.

2. Construct the matrix S = D−1/2WD−1/2 in which D is
a diagonal matrix with its (i, i)-element equal to the
sum of the i-th row of W.

3. Iterate f(t + 1) = αSf(t) + (1 − α)y until convergence,
where α is a parameter in (0, 1).

4. Let f ∗ denote the limit of the sequence {f(t)}. Label
each point xi as yi = sgn(fi).
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Convergence

Theorem. The sequence {f(t)} converges to
f ∗ = β(I − αS)−1y, where β = 1 − α.

Proof. Suppose F (0) = Y. By the iteration equation, we
have

f(t) = (αS)t−1Y + (1 − α)
t−1
∑

i=0

(αS)iY. (1)

Since 0 < α < 1 and the eigenvalues of S in [−1, 1],

lim
t→∞

(αS)t−1 = 0, and lim
t→∞

t−1
∑

i=0

(αS)i = (I − αS)−1. (2)
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Regularization Framework

Cost function

Q(f) =
1

2

[ n
∑

i,j=1

Wij

(

1√
Dii

fi −
1

√

Djj

fj

)2

+ µ

n
∑

i=1

(

fi − yi

)2

]

• Smoothness term. Measure the changes between
nearby points.

• Fitting term. Measure the changes from the initial
label assignments.
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Regularization Framework

Theorem. f ∗ = arg minf∈F Q(f).

Proof. Differentiating Q(f) with respect to f , we have

∂Q
∂f

∣

∣

∣

∣

f=f∗

= f ∗ − Sf ∗ + µ(f ∗ − y) = 0, (1)

which can be transformed into

f ∗ − 1

1 + µ
Sf ∗ − µ

1 + µ
y = 0. (2)

Let α = 1/(1 + µ) and β = µ/(1 + µ). Then

(I − αS)f ∗ = βy. (3)
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Two Variants

• Substitute P = D−1W for S in the iteration
equation. Then f ∗ = (I − αP )−1y.

• Replace S with P T , the transpose of P. Then
f ∗ = (I − αP T )−1y, which is equivalent to
f ∗ = (D − αW )−1y.
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Toy Problem
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(a) t = 10
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(b) t = 50
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(c) t = 100 
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(d)  t = 400
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Toy Problem
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Handwritten Digit Recognition (USPS)
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Handwritten Digit Recognition (USPS)
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Text Classification (20-newsgroups)
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Text Classification (20-newsgroups)
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Spectral Graph Theory

Normalized graph Laplacian ∆ = D−1/2(D − W )D−1/2.

Linear operator on the space of functions defined on the
Graph.

Theorem.
∑

i,j Wij

(

1√
Dii

fi − 1√
Djj

fj

)2

= 〈f, ∆f〉.
Discrete analogy of Laplace-Beltrami operator on
Riemannian Manifold which satisfies

∫

M
‖∇f‖2 =

∫

M
∆(f)f.

Discrete Laplace equation ∆f = y.

Green’s function G = ∆†.
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Reversible Markov Chains

Lazy random walk defined by the transition probability
matrix P ∗ = (1 − α)I + αD−1W, α ∈ (0, 1).

Hitting time Hij = E{ number of steps required for a
random walk to reach a position xj with an initial position
xi}.
Commute time Cij = Hij + Hji.

Theorem. Let L = (D − αW )−1. Then

Cij ∝ Lii + Ljj − Lij − Lji
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Ranking Problem

Problem setting. Given a set of point
X = {x1, ..., xq, xq+1, ..., xn} ⊂ R

m, the first q
points are the queries. The task is to rank the
remaining points according to their relevances to
the queries.
Examples. Image, document, movie, book,
protein ("killer application"), . . .
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Intuition of Ranking: Manifold

(a) Two moons ranking problem
query

(b) Ideal ranking

• The relevant degrees of points in the upper moon to
the query should decrease along the moon shape.

• All points in the upper moon should be more relevant
to the query than the points in the lower moon.
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Toy Ranking

(a) Connected graph

• Simply ranking the data according to the shortest
paths on the graph does not work well.

• Robust solution is to assemble all paths between two
points: f ∗ =

∑

i α
iSiy.

Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking – p. 21/31



Toy Ranking
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Connection to Google

Theorem. For the task of ranking data represented
by a connected and undirected graph without queries,
f ∗ and PageRank yield the same ranking list.
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Personalized Google: a variant

The ranking scores given by PageRank:

π(t + 1) = αP Tπ(t). (4)

Add a query term on the right-hand side for the
query-based ranking,

π(t + 1) = αP Tπ(t) + (1 − α)y. (5)

This can be viewed as the personalized version
of PageRank.
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Image Ranking

The top-left digit in each panel is the query. The left panel
shows the top 99 by our method; and the right panel shows
the top 99 by the Euclidean distance.
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Document Ranking
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Related Work

• Graph/disffusion/cluster kernel (Kondor et al
2002; Chapelle et al. 2002; Smola et al.
2003).

• Spectral clustering (Shi et al. 1997; Ng et al.
2001).

• Manifold learning (nonlinear data
reduction)(Tenenbaum et al. 2000; Roweis et
al. 2000)
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Related Work

• Random walks (Szummer et al. 2001).
• Graph min-cuts (Blum et al. 2001)
• Learning on manifolds (Belkin et al. 2001).
• Gaussian random fields (Zhu et al. 2003).
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Conclusion

• Proposed a general semi-supervised
learning algorithm.

• Proposed a general example-based ranking
algorithm.
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Next Work

• Model selection.
• Active learning.
• Generalization theory of learning from

labeled and unlabeled data.
• Specifical problems & large-scale problems.
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