Dengyong Zhou

zhou@tuebingen.mpg.de

Dept. Scholkoptf, Max Planck Institute for Biological Cybernetics, Germany

_ Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking — p. 1/31



Learning from Examples

» Input space X', and output space
y={1,-1}.
» Training set

S = {Zl — (mlvyl)a ceey Rl = (a?l?yl)} In
Z =X x Y drawn I.1.d. from some unknown
distribution.

- Classifier f : X — V.
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Transductive Setting

* Input space X = {z1,...,x,}, and output
space )Y = {1, —1}.

« Training set
S={xn=(r1,m),--- 2= (2, y)}

- Classifier f : X — V.
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Intuition about classification: Manifold

- Local consistency. Nearby points are likely
to have the same label.

- Global consistency. Points on the same
structure (typically referred to as a cluster or
manifold) are likely to have the same label.
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A Toy Dataset (Two Moons)
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Algorithm

1. Form the affinity matrix W defined by W, =
exp(—||z; — x;]|?/20%) if i £ j and W;; = 0.

2. Construct the matrix S = D~Y2W D~1/2 in which D is
a diagonal matrix with its (¢, ¢)-element equal to the
sum of the i-th row of W.

3. lterate f(t+ 1) = aSf(t) + (1 — a)y until convergence,
where «a is a parameter in (0, 1).

4. Let f* denote the limit of the sequence {f(¢)}. Label
each point x; as y; = sgn(f;).
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Convergence

Theorem. The sequence {f(t)} converges to
f*=p(I—aS) 'y, where 3 =1 — a.
Proof. Suppose F(0) = Y. By the iteration equation, we

have
t—1

f() = (aS)'Y +(1—a)) (aS)Y. (1)

1=0
Since 0 < a < 1 and the eigenvalues of S in |[—1,1],

t—1

tlim (aS)"t =0, and tlim (@S)' = (I —aS)™". (2
i=0
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Regularization Framework

Cost function

A(f) = %[zﬂ: Wij(\/%ﬁfi— ;_fj)2+ﬂzzn; (fi—ng)2]

i,j=1 77

* Smoothness term. Measure the changes between
nearby points.

* Fitting term. Measure the changes from the initial
label assignments.
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Regularization Framework

Theorem. f* = argminscr Q(f).
Proof. Differentiating 9( f) with respect to f, we have

09

| =S -y) =0, (1)
of |, f ff+Hp(f—v)
which can be transformed into
1 7
S gy =0, 2
f T f T+ Y (2)

leta=1/(14+p)and 6= pu/(1+ u). Then

(I —aS)f* = By. (3)
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» Substitute P = D~1'W for S in the iteration
equation. Then f* = (I — aP)1y.

- Replace S with P, the transpose of P. Then
f*= (I — aP!) "1y, which is equivalent to
f*=(D—aW) y.

_ Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking — p. 10/31



Toy Problem
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Toy Problem

@t=10 (b)t=150

1 - : 1

(c)t=100 (d) t =400
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Handwritten Digit Recognition (USPS)
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Handwritten Digit Recognition (USPS)
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Text Classification (20-newsgroups)
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Text Classification (20-newsgroups)
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Spectral Graph Theory

Normalized graph Laplacian A = D~'/2(D — W)D~1/2,
Linear operator on the space of functions defined on the
Graph.

2
Theorem. ), . Wij<ﬁfi — \/%jjfj) = (f,Af).
Discrete analogy of Laplace-Beltrami operator on
Riemannian Manifold which satisfies

[ vk [ s

Discrete Laplace equation A f = y.
Green’s function G = AT,
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Reversible Markov Chains

Lazy random walk defined by the transition probability
matrix P* = (1 — )l + aD'W,«a € (0,1).

Hitting time H,;; = E{ number of steps required for a
random walk to reach a position z; with an initial position
Commute time C;; = H,; + Hj;.

Theorem. Let L = (D — aW)~*. Then
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Ranking Problem

Problem setting. Given a set of point

X = {xl, ey Ly Tty ey len} C R™, the first q
points are the queries. The task is to rank the
remaining points according to their relevances to
the queries.

Examples. Image, document, movie, book,
protein ("killer application”), ...
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Intuition of Ranking: Manifold

(a) Two moons ranking problem (b) Ideal ranking
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* The relevant degrees of points in the upper moon to
the query should decrease along the moon shape.

* All points in the upper moon should be more relevant
to the query than the points in the lower moon.
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Toy Ranking

(a) Connected graph (b) Euclidean distance

* Simply ranking the data according to the shortest
paths on the graph does not work well.

* Robust solution is to assemble all paths between two
points: f* =>". a"S"y.
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Toy Ranking

@t=5 (b)t=20
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Connection to Google

Theorem. For the task of ranking data represented
by a connected and undirected graph without queries,
f* and PageRank yield the same ranking list.
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Personalized Google: a variant

The ranking scores given by PageRank:
m(t+1) = aP'r(t). (4)

Add a query term on the right-hand side for the
guery-based ranking,

m(t+1)=aPln(t)+ (1 —a)y. (5)

This can be viewed as the personalized version
of PageRank.
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Image Ranking
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shows the top 99 by our method; and the right panel shows
the top 99 by the Euclidean distance.
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Document Ranking

manifold ranking

manifold ranking
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Related Work

- Graph/disffusion/cluster kernel (Kondor et al
2002; Chapelle et al. 2002; Smola et al.
2003).

« Spectral clustering (Shi et al. 1997; Ng et al.
2001).

- Manifold learning (nonlinear data
reduction)(Tenenbaum et al. 2000; Roweis et
al. 2000)
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Related Work

- Random walks (Szummer et al. 2001).

« Graph min-cuts (Blum et al. 2001)

» Learning on manifolds (Belkin et al. 2001).
« Gaussian random fields (Zhu et al. 2003).
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Conclusion

- Proposed a general semi-supervised
learning algorithm.

» Proposed a general example-based ranking
algorithm.
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Next Work

» Model selection.
+ Active learning.

« Generalization theory of learning from
labeled and unlabeled data.

« Specifical problems & large-scale problems.
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