Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking

۲

Dengyong Zhou

zhou@tuebingen.mpg.de

Dept. Schölkopf, Max Planck Institute for Biological Cybernetics, Germany

Learning from Examples

- Input space \mathcal{X} , and output space $\mathcal{Y} = \{1, -1\}.$
- Training set $S = \{z_1 = (x_1, y_1), \dots, z_l = (x_l, y_l)\}$ in $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$ drawn i.i.d. from some unknown distribution.
- Classifier $f: \mathcal{X} \to \mathcal{Y}$.

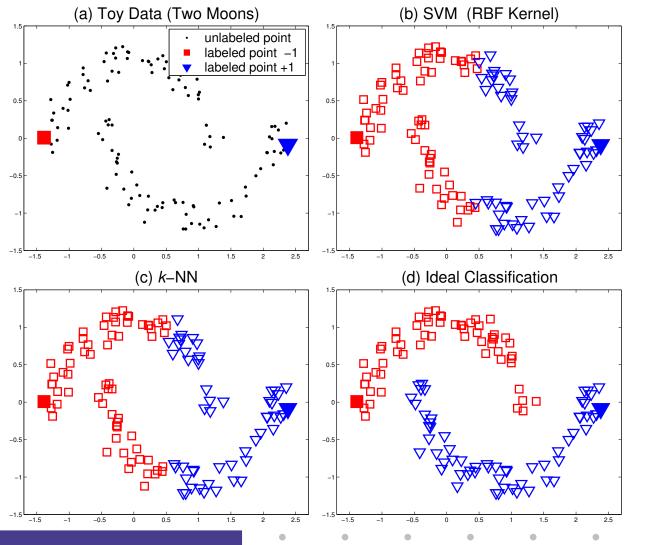
Transductive Setting

- Input space $\mathcal{X} = \{x_1, \dots, x_n\}$, and output space $\mathcal{Y} = \{1, -1\}$.
- Training set $S = \{z_1 = (x_1, y_1), \dots, z_l = (x_l, y_l)\}.$
- Classifier $f : \mathcal{X} \to \mathcal{Y}$.

Intuition about classification: Manifold

- Local consistency. Nearby points are likely to have the same label.
- Global consistency. Points on the same structure (typically referred to as a cluster or manifold) are likely to have the same label.

A Toy Dataset (Two Moons)



Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking - p. 5/31

Algorithm

۲

- 1. Form the affinity matrix W defined by $W_{ij} = \exp(-\|x_i x_j\|^2/2\sigma^2)$ if $i \neq j$ and $W_{ii} = 0$.
- 2. Construct the matrix $S = D^{-1/2}WD^{-1/2}$ in which *D* is a diagonal matrix with its (i, i)-element equal to the sum of the *i*-th row of *W*.
- 3. Iterate $f(t+1) = \alpha S f(t) + (1-\alpha)y$ until convergence, where α is a parameter in (0, 1).
- 4. Let f^* denote the limit of the sequence $\{f(t)\}$. Label each point x_i as $y_i = \text{sgn}(f_i)$.

Convergence

Theorem. The sequence $\{f(t)\}$ converges to $f^* = \beta(I - \alpha S)^{-1}y$, where $\beta = 1 - \alpha$. *Proof.* Suppose F(0) = Y. By the iteration equation, we have

$$f(t) = (\alpha S)^{t-1} Y + (1 - \alpha) \sum_{i=0}^{t-1} (\alpha S)^i Y.$$
 (1)

Since $0 < \alpha < 1$ and the eigenvalues of S in [-1, 1],

$$\lim_{t \to \infty} (\alpha S)^{t-1} = 0, \text{ and } \lim_{t \to \infty} \sum_{i=0}^{t-1} (\alpha S)^i = (I - \alpha S)^{-1}.$$
 (2)

Regularization Framework

Cost function

$$\mathcal{Q}(f) = \frac{1}{2} \left[\sum_{i,j=1}^{n} W_{ij} \left(\frac{1}{\sqrt{D_{ii}}} f_i - \frac{1}{\sqrt{D_{jj}}} f_j \right)^2 + \mu \sum_{i=1}^{n} \left(f_i - y_i \right)^2 \right]$$

- **Smoothness term.** Measure the changes between nearby points.
- Fitting term. Measure the changes from the initial label assignments.

Regularization Framework

Theorem. $f^* = \arg \min_{f \in \mathcal{F}} \mathcal{Q}(f)$. *Proof.* Differentiating $\mathcal{Q}(f)$ with respect to f, we have

$$\left. \frac{\partial \mathcal{Q}}{\partial f} \right|_{f=f^*} = f^* - Sf^* + \mu(f^* - y) = 0, \tag{1}$$

which can be transformed into

۲

$$f^* - \frac{1}{1+\mu}Sf^* - \frac{\mu}{1+\mu}y = 0.$$
 (2)

Let $\alpha = 1/(1 + \mu)$ and $\beta = \mu/(1 + \mu)$. Then

$$(I - \alpha S)f^* = \beta y. \tag{3}$$

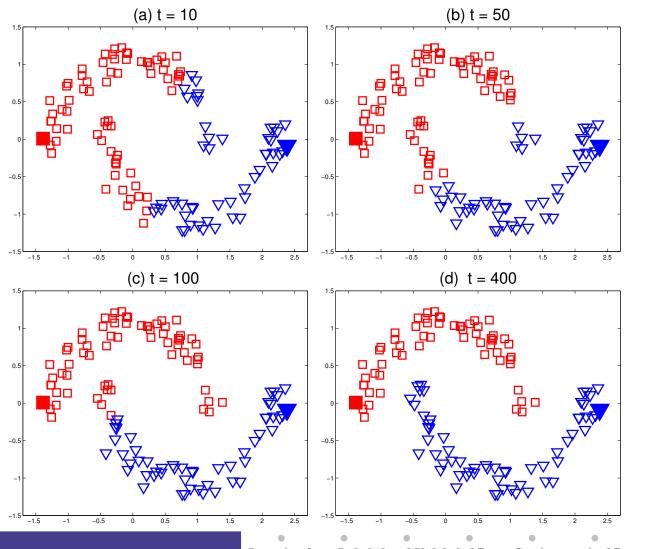
Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking - p. 9/31

Two Variants

- Substitute $P = D^{-1}W$ for S in the iteration equation. Then $f^* = (I \alpha P)^{-1}y$.
- Replace S with P^T , the transpose of P. Then $f^* = (I - \alpha P^T)^{-1}y$, which is equivalent to $f^* = (D - \alpha W)^{-1}y$.

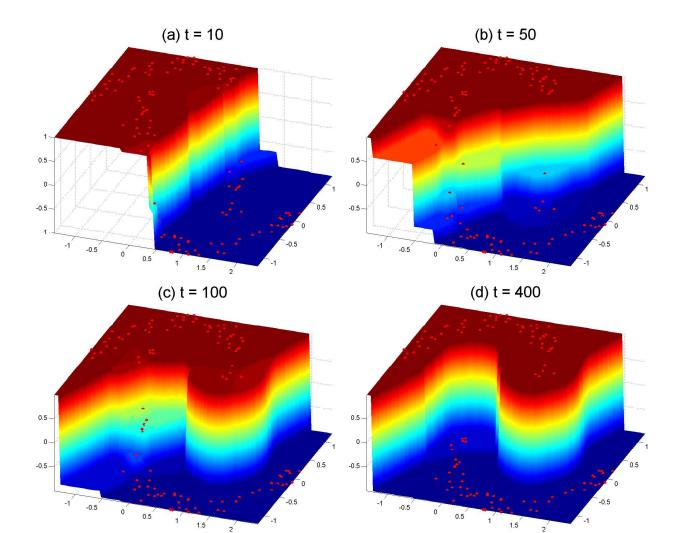
Toy Problem

۲



Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking - p. 11/31

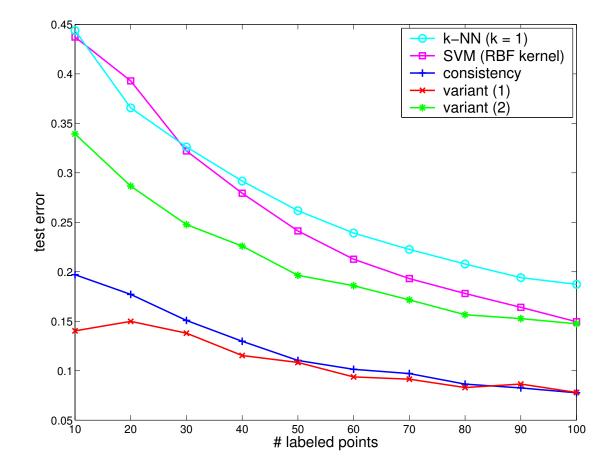
Toy Problem



Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking - p. 12/31

Handwritten Digit Recognition (USPS)

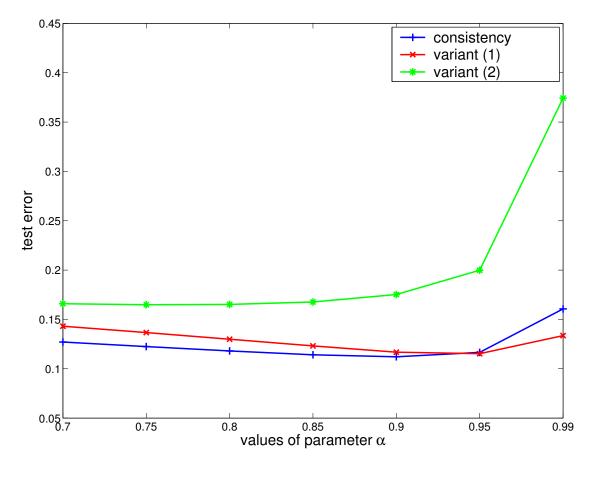
۲



Dimension: 16x16. Size: 9298. ($\alpha = 0.95$)

Handwritten Digit Recognition (USPS)

۲

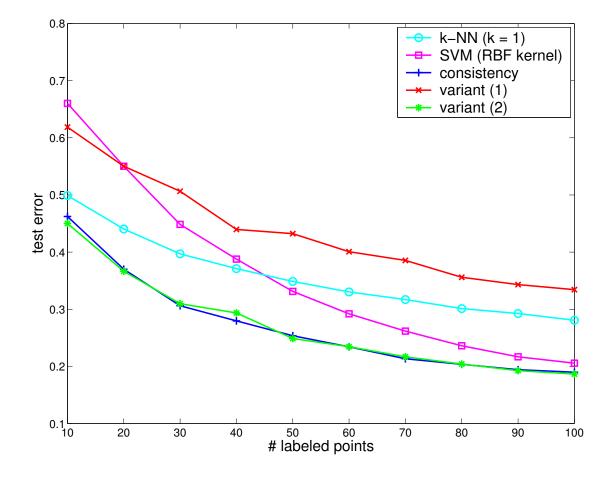


Size of labeled data: l = 50.

Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking - p. 14/31

Text Classification (20-newsgroups)

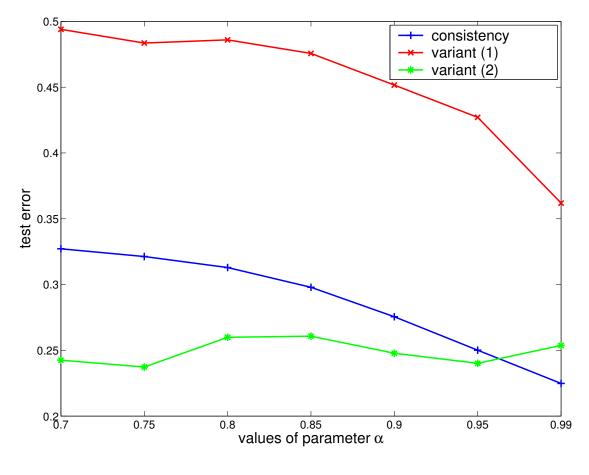
۲



Dimension: 8014. Size: 3970. ($\alpha = 0.95$)

Text Classification (20-newsgroups)

۲



Size of labeled data: l = 50.

Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking - p. 16/31

Spectral Graph Theory

Normalized graph Laplacian $\Delta = D^{-1/2}(D - W)D^{-1/2}$. Linear operator on the space of functions defined on the Graph.

Theorem.
$$\sum_{i,j} W_{ij} \left(\frac{1}{\sqrt{D_{ii}}} f_i - \frac{1}{\sqrt{D_{jj}}} f_j \right)^2 = \langle f, \Delta f \rangle.$$

Discrete analogy of Laplace-Beltrami operator on Riemannian Manifold which satisfies

$$\int_{\mathcal{M}} \|\nabla f\|^2 = \int_{\mathcal{M}} \Delta(f) f.$$

Discrete Laplace equation $\Delta f = y$. Green's function $G = \Delta^{\dagger}$.

Reversible Markov Chains

۲

Lazy random walk defined by the transition probability matrix $P^* = (1 - \alpha)I + \alpha D^{-1}W, \alpha \in (0, 1)$. Hitting time $H_{ij} = E\{$ number of steps required for a random walk to reach a position x_j with an initial position $x_i\}$.

Commute time $C_{ij} = H_{ij} + H_{ji}$. Theorem. Let $L = (D - \alpha W)^{-1}$. Then

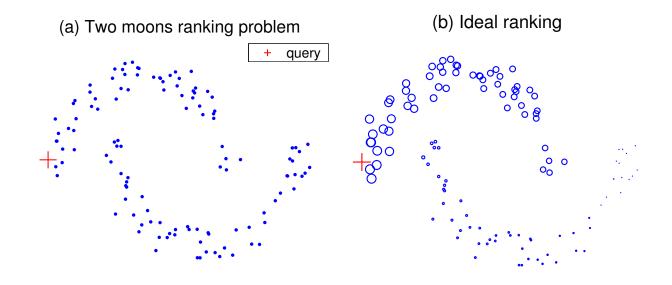
$$C_{ij} \propto L_{ii} + L_{jj} - L_{ij} - L_{ji}$$

Ranking Problem

Problem setting. Given a set of point $\mathcal{X} = \{x_1, ..., x_q, x_{q+1}, ..., x_n\} \subset \mathbb{R}^m$, the first q points are the queries. The task is to rank the remaining points according to their relevances to the queries.

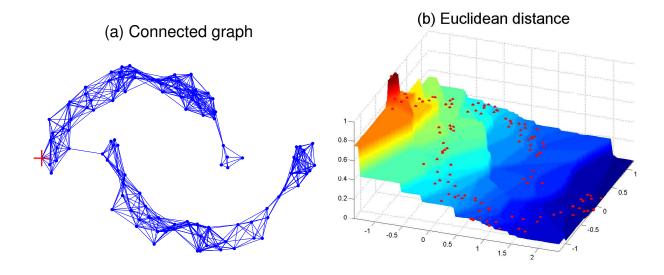
Examples. Image, document, movie, book, protein ("killer application"), ...

Intuition of Ranking: Manifold



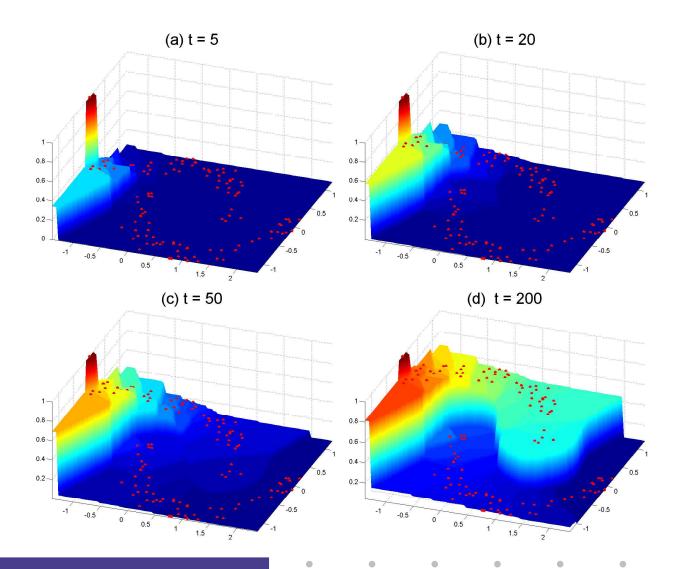
- The relevant degrees of points in the upper moon to the query should decrease along the moon shape.
- All points in the upper moon should be more relevant to the query than the points in the lower moon.

Toy Ranking



- Simply ranking the data according to the shortest paths on the graph does not work well.
- Robust solution is to assemble all paths between two points: $f^* = \sum_i \alpha^i S^i y$.

Toy Ranking



Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking - p. 22/31

Connection to Google

Theorem. For the task of ranking data represented by a connected and undirected graph without queries, f^* and PageRank yield the same ranking list.

Personalized Google: a variant

The ranking scores given by PageRank:

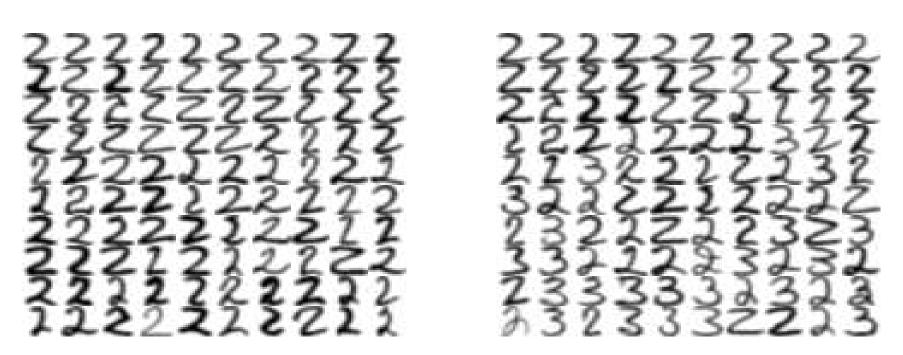
$$\pi(t+1) = \alpha P^T \pi(t). \tag{4}$$

Add a query term on the right-hand side for the query-based ranking,

$$\pi(t+1) = \alpha P^T \pi(t) + (1-\alpha)y.$$
 (5)

This can be viewed as the *personalized* version of PageRank.

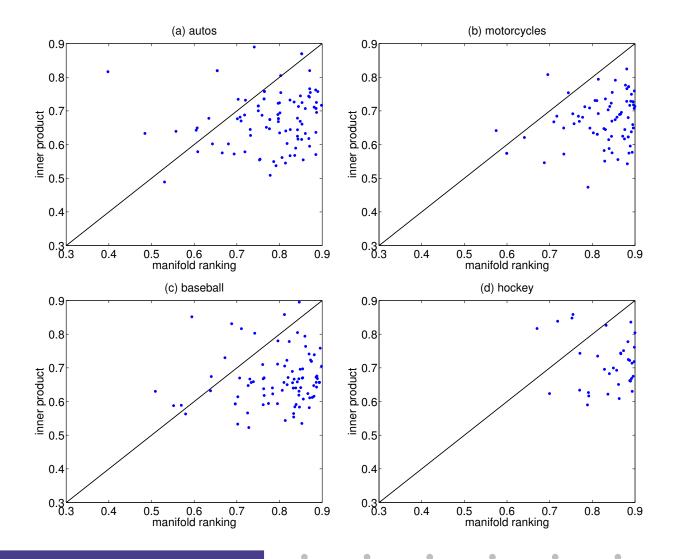
Image Ranking



The top-left digit in each panel is the query. The left panel shows the top 99 by our method; and the right panel shows the top 99 by the Euclidean distance.

Document Ranking

۲



Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking - p. 26/31

Related Work

- Graph/disffusion/cluster kernel (Kondor et al 2002; Chapelle et al. 2002; Smola et al. 2003).
- Spectral clustering (Shi et al. 1997; Ng et al. 2001).
- Manifold learning (nonlinear data reduction)(Tenenbaum et al. 2000; Roweis et al. 2000)

Related Work

- Random walks (Szummer et al. 2001).
- Graph min-cuts (Blum et al. 2001)
- Learning on manifolds (Belkin et al. 2001).
- Gaussian random fields (Zhu et al. 2003).

Conclusion

- Proposed a general semi-supervised learning algorithm.
- Proposed a general example-based ranking algorithm.

Next Work

- Model selection.
- Active learning.
- Generalization theory of learning from labeled and unlabeled data.
- Specifical problems & large-scale problems.

References

- Zhou, D., Bousquet, O., Lal, T.N., Weston, J. and Schölkopf, B.: Learning with Local and Global Consistency. NIPS, 2003.
- Zhou, D., Weston, J., Gretton, A., Bousquet, O. and Schölkopf, B.: Ranking on Data Manifolds. NIPS, 2003.
- Weston, J., C. Leslie, D. Zhou, A. Elisseeff and W. S. Noble: Semi-Supervised Protein Classification using Cluster Kernels. NIPS, 2003.