
IMPLICIT ESTIMATION OF WIENER SERIES 

Matthias O. Franz, Bernhard SchSlkopf 
Max-Planck-Institut ffir biologische Kybernetik 
Spemannstr. 38, D-72076 Tiibingen, Germany 

E-mail: mof, bs@tuebingen.mpg.de 
Web: www.tuebingen.mpg.de/mof 

A b s t r a c t .  T h e  W i e n e r  series  is one  of  the  s t a n d a r d  m e t h o d s  
to  s y s t e m a t i c a l l y  charac ter ize  the  n o n l i n e a r i t y  of  a s y s t e m .  T h e  
c lass ical  e s t i m a t i o n  m e t h o d  of  the  e x p a n s i o n  coef f ic ients  via  cross-  
corre la t ion  suffers from severe  p r o b l e m s  tha t  prevent  its appl ica-  
t i on  to h i g h - d i m e n s i o n a l  and  s t r o n g l y  non l inear  s y s t e m s .  W e  pro- 
p o s e  an impl i c i t  e s t i m a t i o n  m e t h o d  b a s e d  on regres s ion  in a re- 
p r o d u c i n g  kernel  H i l b e r t  space  that  a l l ev ia te s  the s e  p r o b l e m s .  Ex-  
p e r i m e n t s  show p e r f o r m a n c e  a d v a n t a g e s  in t e r m s  of  c o n v e r g e n c e ,  
in terpre tab i l i ty ,  and  s y s t e m  sizes  that  can be  h a n d l e d .  

I N T R O D U C T I O N  

In system identification, one tries to infer the functional relationship between 
system input and output from observations of the in- and outgoing signals. If 
the system is linear, it can be characterized uniquely by measuring its impulse 
response, for instance by reverse correlation. For nonlinear systems, however, 
there exists a whole variety of system representations. One of them, the 
Wiener expansion, has found a somewhat wider use in neuroscience and signal 
processing since its estimation constitutes a natural extension of linear system 
identification. The coefficients of the Wiener expansion can be estimated by 
a cross-correlation procedure that is conveniently applicable to experimental 
data (overview in [5]). 

Unfortunately, the estimation of the Wiener expansion by cross-correlation 
suffers from severe problems: (1) High-dimensional input leads to a pro- 
hibitively large number of terms that have to be estimated; (2) the cross- 
correlation estimator converges very slowly; (3) input signals are restricted 
to Gaussian noise. In this contribution, we want to overcome these prob- 
lems by proposing an estimation method based on concepts from regression 
in reproducing kernel Hilbert spaces (RKHS). We will show that the new 
estimation method is superior to the classical one in terms of convergence, 
interpretability, and system sizes that can be handled. 

In the remainder of this section, we introduce the Wiener expansion and 
discuss the problems of the cross-correlation procedure. The implicit esti- 



mation method is described in Sect. 2, followed by some examples of use in 
Sect. 3. We conclude in Sect. 4 by briefly discussing the results and possible 
improvements of the estimation procedure. 

W i e n e r  t h e o r y  of  n o n l i n e a r  s y s t e m s .  A system can be defined math- 
ematically as a rule that  assigns an output signal y(t) to an input signal 
x(t)  (t stands for the time variable). This rule can be expressed in the form 
y(t) = T[x(t)] using the system operator T. Subject to certain restrictions, 
one can show that  a time-invariant T can be expressed as a Volterra series 
consisting of integral operators on the input 

y(t) = Ho[x(t)] + H~[x(t)] + H~[x(t)] + . . .  + H~[x(t)] + . . .  (1) 

in which Ho[x(t)] = ho = const, and 

H~[x(t)] - . . .  h (~)(n ,  ..,7-~)x(t - n ) . . . x ( t  - 7-~)dn. . .dT-~ (2) 
(N2) (N2) 

is the nth-order Volterra functional [7]. The functions h(~)(T1,.., ~-~) are the 
Volterra kernels of the system. Throughout this text, we assume that  the 
Volterra kernels are symmetric with respect to permutations of the ~-~. It can 
be shown that  any non-symmetric kernel can be converted into a symmetric 
kernel without changing the system output [5]. 

In system identification, we are interested in finding a model of the un- 
known system in the form of a Volterra series representation that  minimizes 
the mean squared error between the true output and the model output. The 
classical cross-correlation method for this problem has been introduced by 
Wiener [8]. Wiener assumed an experimental setting in which the input is 
controlled by the experimenter such that  a convenient class of input functions 
can be chosen. If the distribution of the input is known then one can choose 
an input-specific decomposition of the system operator T 

y(t) = Go[x(t)] + Gl[x(t)] + G2[x(t)] + . . .  + Gn[x(t)] + . . .  (3) 

into operators Gn[x(t)] that  are uncorrelated, i.e., orthogonal with respect 
to the input. The Gn[x(t)] are linear combinations of Volterra operators 
up to order n. They can be obtained from the original Volterra series by a 
procedure very similar to Gram-Schmidt orthogonalization [5]. The use of 
orthogonal operators has the advantage that  all operators of the expansion 
can be estimated independently of each other. 

One possible choice is white Gaussian noise with zero mean and known 
variance A. In this case, the orthogonal expansion in Eq. (3) is called a 
Wiener series, and the n-th order Volterra kernels of the nth-order Wiener 
functionals, the Wiener kernels k (n), can be estimated by 

1 
k (°) - y(t) and k (n ) (a~ , . . . , an )  - n ! A n Y ( t ) x ( t -  a ~ ) . . . x ( t -  an) (4) 

where the bar indicates the average over time [8]. Besides the Wiener kernel, 
every Wiener functional of degree n contains a varying number of lower order 



Volterra operators which can be derived from the Wiener kernel by a proce- 
dure described in [5]. It can be shown that  any Wiener expansion of finite 
degree minimizes the mean squared error between the true system output 
and its Volterra series model [5]. 

In practical signal processing, one uses a discretized form for a finite 
sample of data instead of Eq. (2), where the Volterra functionals are expressed 
as m 

Hn[x  ] E,I=I,,, E~'}I'__I (n) - -  ~ - -  h i l . . . i  x i  1 . . . x i ~ .  (5) 

Here, we assume that  the input data is given as a vector x = (Xl , . . . ,  Xm)T C 
~m. The vectorial data can be generated from any multi-dimsional input or, 
for instance, by a sliding window on a discretized time series. The discretized 

nth-order Volterra kernel is given as a finite number of m n coefficients h! n) 
~1 . . . i n  " 

The discretized nth-order Volterra functional is, accordingly, a linear combi- 
nation of all ordered nth-order monomials of the elements of x. 

P r o b l e m s  o f  t h e  c r o s s - c o r r e l a t i o n  m e t h o d .  The estimation of the 
Wiener expansion via cross-correlation poses some serious problems: 
1. In practice, the cross-correlations have to be estimated at a finite resolution 
(cf. the discretized version of the Volterra operator in Eq. (5)). The number of 
expansion coefficients in Eq. (5) increases with m n for an m-dimensional input 
signal and an nth-order Wiener kernel. However, the number of coefficients 
that  actually have to be estimated by cross-correlation is smaller. Since the 
products in Eq. (5) remain the same when two different indices are permuted, 
the associated coefficients are equal in symmetric Volterra operators. As a 
consequence, the required number of measurements is ( n + m -  1)! / (n!(m-1)!)  
[5]. Nonetheless, the resulting numbers are huge for higher-order Wiener ker- 
nels. For instance, a 5th-order Wiener kernel operating on 16 x 16 sized 
image patches contains roughly 1012 coefficients, 10 l° of which would have to 
be measured individually by cross-correlation. As a consequence, this proce- 
dure is not feasible for higher-dimensional input signals. 
2. The estimation of cross-correlations requires large sample sizes. Typ- 
ically, one needs several tens of thousands of input-output pairs before a 
sufficient convergence is reached. Moreover, the variance of the estimator 
y ( t ) x ( t -  a l ) . . . x ( t -  an) in Eq. (4) increases with increasing values of the 
ai [4] such that  only operators with relatively small memory can reliably be 
estimated. 
3. The estimation via cross-correlation works only if the input is Gaussian 
noise with zero mean, not for general types of input. 

In this study, we propose a different method for estimating the Wiener 
expansion that  alleviates these practical problems. The method relies on a 
regression technique taken from the field of kernel methods which is widely 
used in the machine learning community. 



E S T I M A T I N G  W I E N E R  S E R I E S  B Y  R E G R E S S I O N  I N  R K H S  

L i n e a r  r e g r e s s i o n  in R K H S .  Given observations (Xl,Yl),..., (XN,YN), 
linear regression tries to est imate y as a function of x via 

M 
y -  f ( x ) -  E j = I  "~j~j(X), (6) 

using 7j C R and a dictionary of functions ~j .  We will be interested in 
the case where the dictionary is specified in terms of a kernel function k via 
y)j (x) = k(x, zj),  using a set of points Z l , . . .  ,ZM (x and zj are from a set Z,  
say, ]t~ TM). In particular,  we consider positive definite kernels, i.e., functions k 
with the property tha t  the Gram matrix Kij = k(xi, xj)  is positive definite 
for all choices of the X l , . . .  ,XN. It can be shown that  such kernels admit  
a representation as a dot product in an associated linear space F, i.e., there 
exists a map • such tha t  k (x ,x ' )  = ~ ( x ) T ~ ( x ' ) .  Modulo certain details, F 
can be identified with a space of functions 

M 
f ( x ) -  E j = I  "~jk(x, zj).  (7) 

This space has the s tructure of a reproducing kernel Hilbert space (RKHS). 
By carrying out linear methods in F, one can obtain elegant solutions for var- 
ious nonlinear est imation problems (see [6]), examples being Support  Vector 
Machines. Although F can have infinite dimension, 1 these problems can of- 
ten be solved efficiently, which is in part  due to the so called representer 
theorem. It states the following: suppose c is an arbi t rary  cost function, ft 
is a nondecreasing function on R>0 and II.IIF is the norm of the RKHS. If we 
minimize an objective function 

c((xl ,  yl, f ( x l ) ) , . . . ,  (xN, YN, f(XN))) + ~(llfllF), (8) 

over all functions of the form (7), then an optimal solution 2 can be expressed 
3S 

N 
f ( x ) -  E j = I  ajk(x, xj), aj C R. (9) 

In other words, al though we did consider functions which were expansions in 
terms of arbi t rary  points zj (see (7)), it turns out tha t  we can always express 
the solution in terms of the training points xj only. Hence the optimization 
problem over an arbitrari ly large number of M variables 7j is t ransformed 
into one over N variables aj, where N is the number of training points. 

Let us consider the special case where the cost function is the mean 
1 y_ squared error, c ( (x l , y l ,  f ( x l ) ) , . . . ,  (xN,YN, f(XN))) -- N ~ 1 (f(xj)--YJ) 2 

and the regularizer ft is zero. The solution for a = ( a l , . . .  ,aN) is readily 

1Note that  with a slight abuse of notation, we nevertheless used the transpose to denote 
the dot product in that  space. 

2for conditions on uniqueness of the solution, see [6] 



computed by setting the derivative of (8) with respect to the vector a equal 
to zero; it takes the form a = K - l y ,  hence 3 

y = f (x )  = aTz(x)  = y T K - l z ( x ) ,  (10) 

where z(x) = (k(x, x l ) ,  k(x, x 2 ) , . . ,  k(x, xN)) T C IR N. 

V o l t e r r a  ser ies  as l i nea r  o p e r a t o r  in R K H S .  We now have the pre- 
requisites to develop an alternative approach to estimating the Wiener series 
expansion. As our first step, we have to convert the Volterra series into a form 
suitable for regression in RKHS. Our starting point is the discretized version 
of the Volterra operators from Eq. (5) which is also the base of the classical 
cross-correlation procedure. The nth-order Volterra operator is a weighted 
sum of all nth-order monomials of the input vector x. For n = 0, 1, 2 , . . .  we 
define the map ¢~ as 

¢0(x) - 1 and Cn(X) - (x~ X n - l x  , . .  n--1 n , 1  2 . , X l X  2 , x 2 , . . . , X n m )  (11) 

such that  ¢~ maps the input x C IR m into a vector ¢~(x) C F~ = IR m~ 
containing all m ~ ordered monomials of degree n. Using ¢~, we can write 
the nth-order Volterra operator in Eq. (5) as a scalar product in F~, 

H~[x] - r n~ ¢~ (x), (12) 

__ [h(n) h(n) h(n) T with the coefficients stacked into the vector r/~ \'~1,1,..1, '~1,2,..1, ' ~ 1 , 3 , . . 1 ,  • • • ) 

C F~. Fortunately, the functions ¢~ constitute a RKHS. It can be easily 
shown (e.g., [6]) that  

¢~(Xl) r¢~(x2)  - (XlrX2)  ~ - k~(Xl, x2). (13) 

The same idea can be applied to the entire pth-order Volterra series. By 
stacking the maps ¢~ into a single map ¢(P) (x) = (¢0 (x), ¢1 (X), . . . , Cp ( x ) ) T  

one obtains a mapping from ]R m into F (p) - ]R x ]R m x ]R m2 x . . .  ]R m~ - ]R M 

with dimensionality M = 1-m~+1 The entire pth-order Volterra series can 1--m " 
be writ ten as a scalar product  in F(p) 

E : = 0  Hn[x] - (~(p))T¢(p) (x) (14) 

with r/(p) C F(p). Since F(p) is generated as a Cartesian product of the single 
spaces F~, the associated scalar product  is simply the sum of the scalar 
products in the F~: 

¢ ( P ) ( x 1 ) T ¢ ( P ) ( x 2 ) -  E : = o ( X ? X 2 )  n -- ~ ( P ) ( x I , X 2 ) .  (15) 

Thus, we have shown that  the discretized Volterra series can be expressed as 
a linear operator in a RKHS. A similar approach has been taken by [1] using 
the inhomogeneous polynomial kernel 

k(p) i n h ( X l , X 2 ) -  (1 + xlTx2) p. (16) 

3If K is not invertible, K - 1  denotes the pseudo-inverse of K. 



This kernel implies a map ¢inh into the same space of monomials, but it 
weights the degrees of the monomials differently as can be seen by applying 
the binomial theorem to (16). 

Imp l i c i t  W i e n e r  ser ies  e s t i m a t i o n .  As we stated above, the pth-degree 
Wiener expansion is the pth-order Volterra series that minimizes the squared 
error if the input is white Gaussian noise with zero mean. This can be put 
into the regression framework: assume we generate white Gaussian noise 
with zero mean, feed it into the unknown system and measure its output. 
Since any finite Volterra series can be represented as a linear operator in the 
corresponding RKHS, we can find the pth-order Volterra series that minimizes 
the squared error by linear regression. This, by definition, must be the pth- 
degree Wiener series since no other Volterra series has this property 4. From 
Eqns. (4) and (10), we obtain the following expressions for the implicit Wiener 
series 

1 yT P P y T  1 (p) (17)  
Go[x] - ~ 1, E n = o G n [ x ]  - E n = o H n [ x ]  - Kp  z (x) 

where the Gram matrix Kp and the coemcient vector z(p)(x) are computed 
using the kernel from Eq. (15) and 1 - (1, 1 , . . . )T  E ~N. Note that the 
Wiener series and its Volterra functionals are represented only implicitly since 
we are using the RKHS representation as a sum of scalar products with the 
training points. Thus, we can avoid the "curse of dimensionality", i.e., there 
is no need to compute the possibly large number of coemcients explicitly. 

The explicit Volterra and Wiener expansions can be recovered from Eq. (17) 
by collecting all terms containing monomials of the desired order and sum- 
ming them up. The individual nth-order Volterra operators (p > 0) are given 
implicitly by 

Hn[x] - yTKplzn(X)  (18) 

with z~(x) - ((x~x) ~, ( x ~ x ) ~ , . . . ,  (xTNx) ~)T. For p -- 0 the only term is 
the constant zero-order Volterra operator H0[x] - G0[x]. The coemcient 

_ ;h(n) h(n) h(~) . . .  )T of the explicit Volterra operator vector ~n \'~1,1,...1~ '~1,2,...1~ '~1,3,...1~ 
is obtained as 

T - 1  (19) r ln  - -  ~2 n K p Y 

using the design matrix (I)n - (¢n(Xl) T, Cn(Xl)T, . . . ,  Cn(Xl)T) T. 
The individual Wiener functionals can only be recovered by applying the 

regression procedure twice. If we are interested in the nth-degree Wiener 
functional, we have to compute the solution for the kernels k(n)(xl, x2) and 
k(~- l ) (xl ,x2) .  The Wiener functional for n > 0 is then obtained from the 
difference of the two results as 

n 

_ yT [K~l z(n)(x) - K~_ll z (n-1)(x)].  (20) 

4assuming symmetrized Volterra kernels which can be obtained from any Volterra ex- 
panson. 



The corresponding ith-order Volterra operators of the nth-degree Wiener 
functional are computed analogously to Eqns. (18) and (19). 

O r t h o g o n a l i t y .  The resulting Wiener functionals must fulfill the orthog- 
onality condition which in its strictest form states that a pth-degree Wiener 
functional must be orthogonal to all monomials in the input of lower order. 
Formally, we will prove the following 

T h e o r e m  1 The funct ionals  obtained f rom Eq. (20) fulfill the orthogonality 
condition 

E [m(x)Gp[x]] - 0 (21) 

where E denotes the expectation over the input  distribution and re(x) an 
i th-order monomia l  with i < p. 

We will show that this a consequence of the least squares fit of any linear 
expansion in a set of basis functions of the form of Eq. (6). In the case of the 
Wiener and Volterra expansions, the basis functions pj (x)  are monomials of 
the components of x. 

We denote the error of the expansion as e(x) - y - E~_-I 7 j ~ j ( x i )  • The 
minimum of the expected quadratic loss L with respect to the expansion 
coefficient 7k is given by 

OL 0 
= --EII (x)II - - 2 E [ p k ( x ) e ( x ) ]  - O. (22) 

0')'k 0')'k 

This means that, for an expansion of the type of Eq. (6) minimizing the 
squared error, the error is orthogonal to all base functions used in the expan- 
sion. 

Now let us assume we know the Wiener series expansion (which minimizes 
the mean squared error) of a system up to degree p -  1. The approximation 
error is given by the sum of the higher-order Wiener functionals e(x) = 
}-~__p G~[x], so Gp[x] is part of the error. As a consequence of the linearity 
of the expectation, Eq. (22) implies 

E n ~ = p E [ p k ( x ) G n [ x ] ]  - 0 and E~__p+l E[pk(x)G~[x]]  - 0 (23) 

for any Ck of order less than p. The difference of both equations yields 
E [pk(x)Gp[x]] = 0, so that Gp[x] must be orthogonal to any of the lower 
order basis functions, namely to all monomials with order smaller than p. D 

For both the regression and the orthogonality of the resulting functionals, 
the assumption of white Gaussian noise was not required. In practice, this 
means that we can compute a Volterra expansion of type (17) for any type 
of input, not just for Gaussian noise. Note, however, that  the orthogonality 
of functionals can be only defined with respect to an input distribution. If 
we use Eq. (20) for non-Gaussian input the resulting functionals will still 
be orthogonal, but with respect to the non-Gaussian input distribution. The 
resulting decomposition of the Volterra series into orthogonal functionals will 
be different from the Gaussian case. As a consequence, the functionals com- 
puted according to Eq. (20) will be different from the Wiener functionals. 
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Figure 1: Left: Mean squared error between true and estimated coefficients of 
the second-order Wiener kernel of a correlation-type motion detector for varying 
number of training samples. Right: Mean squared prediction error on test set. The 
solid line depicts the error of the regression technique, the dash-dot line that of the 
cross-correlation technique. 

E X P E R I M E N T S  

Conve rgence .  In this example, the system to be identified is a sim- 
ple correlation-type motion detector of the form y[n] - 4 (~-~'~k=o h[k]x[n - 
k ] ) (  4 }-~'~k=0 l[k]x[n + 1 - k]) with some arbitrary, but fixed high pass h[k] and 
low pass l[k] of order 5. The data are generated by sliding two windows of 
width x [ n -  4] . . .  x[n] and x [ n -  3] . . .  x[n + 1] over a time series of white, 
zero-mean Gaussian noise and simultaneously measuring the system output 
y[n]. Finally, we added white, zero-mean Gaussian measurement noise to 
the signal with a variance of 10% of the signal variance. We applied both 
estimation methods, cross-correlation and regression, to estimate the 21 free 

2 
parameters of the second-degree Wiener model ~) - }-~'~i=0 G i N .  The model- 

5 ing error ~ was measured for the second order kernel using ~ - ~-~'(~i- hi) 2 
and averaging e over the 20 trials. We varied the number of training samples 
to see how the modeling error decreases with the number of samples. For 
comparison,we also computed the prediction error on an independent test set 
of 100 examples. 

As the result shows (Fig. 1), both the modeling and the prediction error of 
the regression technique decreases at a significantly faster rate than the cross- 
correlation method due to the unfavorable properties of the cross-correlation 
estimator. In fact, a comparable modeling error is only reached at sample 
sizes that are more than 10 times as large (not contained in the figure). 

R e c o n s t r u c t i o n  of  a f i f th -o rde r  n o n l i n e a r  r ecep t ive  field. This ex- 
periment demonstrates the applicability of the proposed method to high- 

_ _  1 6  dimensionalinput. Our example is the fifth-order systemy (}-~'~k,I=l hkIxkI) 5 

that  acts on 16 x 16 image patches by convolving them with a receptive field 
hkI of the same size shown in Fig. 2a before the nonlinearity is applied. We 
generated 2500 image patches containing uniformly distributed white noise 
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Figure 2: Left: 16 × 
16 nonlinear receptive 
field of the test system; 
Right: Reconstructed 
receptive field from the 
fifth-order Volterra ker- 
nel by computing a 
preimage (after 2500 
samples). 

and computed the corresponding system output to which, as above, we added 
10% Gaussian measurement noise. The resulting data was used to estimate 
the implicit Wiener expansion using the regression procedure. In the classical 
cross-correlation procedure, this would require the computation of roughly 
9.5 billion independent terms for the fifth-order Wiener kernel. Moreover, 
even for much lower-dimensional problems, it usually takes tens of thousands 
of samples until a sufficient convergence is reached. 

Even if all entries of the fifth-order Wiener kernel were known, it would be 
still hard to interpret the result in terms of its effect on the input signal. The 
implicit representation of the Volterra series allows for the use of preimage 
techniques (e.g., [6]) where one tries to choose a point z in the input space 
such that the nonlinearly mapped image in F, ~b(z), is as close as possible to 
the representation in RKHS. In the case of the fifth-order Wiener kernel, this 
amounts to representing Hs[x] by the operator (zTx) 5 with an appropriately 
chosen preimage z c ~256. The nonlinear map z ~ z 5 is invertible, so 
that we can use the direct technique described in [6] where one applies the 
implicitly given Volterra operator from Eq. (18) to each of the canonical 
base vectors of ~256 resulting in a 256-dimensional response vector e. The 
preimage is obtained as z = ~/~. The result in Fig. 2b demonstrates that 
the original receptive field is already recognizable after using 2500 samples. 
The example shows that the preimage technique elucidates to which input 
structures the Volterra-operator is tuned, similar to the classical analysis 
techniques in linear systems. 

C O N C L U S I O N  

The benefits of the proposed estimation technique of the Wiener expansions 
via kernel regression can be summarized as follows: 

1. The implicit representation of the Wiener series allows for system 
identification with high-dimensional input signals. Essentially, this is due to 
the representer theorem: although a higher order series expansion contains a 
huge number of coefficients, it turns out that when estimating such a series 
from a finite sample, the information in the coefficients can be represented 
more parsimoniously using an example-based implicit representation. 

2. Convergence is considerably faster than in the classical procedure be- 
cause the estimation is done directly on the data. The regression method 



omits the intermediate step of estimating cross-correlations which converges 
very slowly. 

3. Preimage techniques reveal the input structures to which the Wiener 
operators are tuned. The preimage corresponds to a nonlinear receptive field 
where the input is convolved with a linear filter whose output is fed into 
a nonlinearity. The present method works only for Volterra kernels of odd 
order. More general techniques exist, including the case of other kernels and 
the computation of approximations in terms of several preimages ("reduced 
sets") [6]. The latter corresponds to an invariant subspace of the Volterra 
operator (cf. [3]). 

4. The method works also for non-Gaussian input. In particular, uniform 
noise turned out to lead to better results than Gaussian noise since its val- 
ues are bounded. The Gaussian distribution sometimes produces very large 
values which are extremely amplified by the higher order monomial terms. 

From the point of view of learning theory, the proposed estimation method 
has the drawback that the regularization term in the objective function (8) 
is currently set to zero in order to preserve the orthogonality property of the 
resulting Wiener functionals. This may possibly lead to a degraded general- 
ization performance and an increased sensitivity to noise. Currently, we are 
investigating regularization techniques [2], e.g., penalizing the RKHS-norm 
of the solution (as it is done in Support Vector Machines). The resulting 
Volterra model can still be converted to a Wiener series by applying the or- 
thogonalization procedure described in [5]. In future work, we plan to explore 
iterative estimation techniques to accommodate large sample sizes. 

A c k n o w l e d g m e n t s .  The ideas presented in this paper have greatly profited 
from discussions with G. Baklr, M. Kuss, and C. Rasmussen. 
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