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Abstract. Identifying the action potentials of individual neurons from
extracellular recordings, known as spike sorting, is a challenging problem.
We comnsider the spike sorting problem using a generative model, miztures
of factor analysers, which concurrently performs clustering and feature
extraction. The most important advantage of this method is that it quan-
tifies the certainty with which the spikes are classified. This can be used
as a means for evaluating the quality of clustering and therefore spike
isolation. Using this method, nearly simultaneously occurring spikes can
also be modelled which is a hard task for many of the spike sorting meth-
ods. Furthermore, modelling the data with a generative model allows us
to generate simulated data.

1 Introduction

Recording the spiking activity from well isolated single neurons is important for
studying the physiological functions of the brain. Although intracellular elec-
trodes provide good quality signals from a single neuron, recording with an
intracellular electrode in awake behaving animals is extremely difficult. Extra-
cellular electrodes introduced into the brain isolating a single neuron have been
successfully used for years. Recently, there has been excitement about recording
simultaneously from multiple neurons in order to study their interactions. Elec-
trodes placed in the extracellular medium can record the activity of multiple
nearby neurons but this leads us to the question of distinguishing between the
activity of individual neurons known as spike sorting. Under the assumption that
the extracellular space is electrically homogeneous, four-tip electrodes (tetrodes)
provide the minimal number necessary to identify the spatial position of a source
based on the relative spike amplitudes on different electrodes. Recording with
multi-tip electrodes improves the identification of individual neurons compared
to standard single-tip electrodes ([3]).

Spike sorting is usually done in three steps, namely spike detection, feature
extraction and clustering. Determination of the occurrence of spikes, which is
usually achieved by high-pass filtering followed by thresholding is known as the
spike detection step. In the feature extraction stage, a feature vector for each
spike is calculated and clustering is done on this low dimensional feature space.



2 D. Gériir, C.E. Rasmussen, A.S. Tolias, F. Sinz, N.K. Logothetis

|

chl -

ch2 -

R
o N
=

e

ch4 >

16 24 32

80 96 112 128

Fig. 1. Data recording and representation: Extracellular waveforms are recorded with a
tetrode. Every time the signal exceeded the threshold in one of the channels, a window
of 1ms around this event was extracted from the recordings of each channel and joined
to form the data vectors

In most laboratories the clustering is done manually, usually using only the peak-
to-peak amplitude data as features in order to make visualisation possible. There
are also automatic spike sorting techniques that have been proposed which use
different methods for feature extraction and clustering (see [5] for a review). A
common problem of the spike sorting techniques is that the true labels for the
recorded data cannot be known without the verification of intracellular record-
ings, which makes it very hard to evaluate the results obtained by clustering
techniques.

Here, we present an automated way of spike sorting based on mixtures of
factor analysers (MFA) using data collected with tetrodes. MFA is a statistical
method that concurrently performs clustering and feature extraction. It models
the spike waveforms and therefore overcomes the major cause of separation error,
overlapping clusters in the low dimensional feature space. MFA can also model
the nearly simultaneously occurring spikes which is a hard task for many spike
sorting methods. It assigns responsibility degrees to each cluster for each spike
and the entropy of these responsibilities can be used as a means for clustering
evaluation. In addition, modelling the data with a generative model allows us to
generate simulated data. The next section describes the data used in this study.
In section 3, the clustering method is explained and in section 4 we demonstrate
the method with real data collected with tetrodes.

2 Data Collection

We used data recorded with tetrodes from awake behaving macaque monkeys.
The data were collected using a multi-channel data acquisition system (Cheetah
Inc.). The signal was band-pass filtered between 600-6000Hz and digitised at
32kHz. The neuronal spikes were acquired via an interrupt-driven, spike volt-
age threshold-triggered data acquisition system. That is, when a signal above
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threshold was detected in one of the channels, the occurrence of a spike was as-
sumed and therefore the signal in all channels was stored within a window length
of 1 ms around the triggering event with a corresponding time stamp. The 32-
dimensional signals of all four channels were joined to form the 128-dimensional
data vectors for the MFA model (see figure 1).

3 Methods

In unsupervised learning, dimensionality reduction and clustering are usually two
steps that come sequentially. In dimensionality reduction, the features that are
highly correlated are compressed, whereas in clustering, the data with similar
features are grouped. MFA combines a well known dimensionality reduction
technique, factor analysis, with a widely used clustering technique, mixture of
Gaussians.

3.1 Factor Analysis

Factor analysis (FA) is a latent variable model in which a p-dimensional real-
valued data vector y is modelled using a k-dimensional vector of factors where
k << p. Dimensionality reduction is achieved by finding a low dimensional
projection of the high dimensional data that captures most of the correlation
structure of the data. The generative model is given by:

y=Ax+pu+e (1)

where A is called the factor loading matriz. The factors x and the noise are
assumed to be normally distributed, x ~ A(0,I) and &€ ~ N (0, ¥), where ¥ is
a diagonal matrix. Therefore, y is also normally distributed with mean p and
covariance AAT + ®. If ¥ is constrained to be 61, then in the limit § — 0, the
FA becomes a PCA. In FA, the scaling of the coordinates is not important, but
the axis rotation in which the original data arrived is important since noise is
independent along the axes the input data are represented [7].

3.2 Mixtures of Factor Analysers

By using a mixture of factor analysers, dimensionality reduction and clustering
can be achieved simultaneously. If we consider a mixture of M factor analysers,
the distribution of the data becomes:

M
= Z N (i, A AT + ) (2)

where 7; denote the mixing proportions.

Given a set of observations Y = {yi1,...,¥n}, we can describe the joint
distribution of the data and the hidden factors using binary indicator variables
zi,t=1,..., M as

P(Y,x,2) HZP P(x|2;)P(y;|x, ;) (3)

]:1 =

[
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where z; = 1 indicates that the example was generated by the it mixture. The
unknown parameters A;, u;, m; and ¥ that best model the covariance structure
of the data can be found by maximum likelihood estimation using the EM algo-
rithm, described below.

In the following, Y is the observation matrix and H are the unobserved
(missing) quantities, in our case the latent variables of the factor analysis model
(x) and the identity of the mixture component which generated the observation
(2;). For any distribution @ over the latent variables, the log likelihood ( £ =
In P(Y|#)) can be lower bounded using Jensen’s inequality:

P(H, Y|6)
Q(H)

defining the F(Q, ) functional. Alternately optimising F with respect to the
distribution of the hidden variables Q(H), and the parameters 6 is guaranteed
not to decrease L.

In the E step, we specify the distribution of the hidden variables that max-
imises F! and calculate the expectation of the log likelihood with respect to this
distribution. In the M step, we maximise the expected log likelihood, log P(H,Y9),
with respect to the parameters, keeping the @) distribution constant.

There are two sets of conditionally independent hidden variables, thus the
Q distribution is of the form Q(x, z;) = Q(x|z;)Q(2;). Therefore, in the E step
we compute the distributions of the hidden factors given the indicator variables
Q(x|2;), the distribution of the indicator variables @(z;) and the expected log
likelihood with respect to the @ distribution (for details see [2]).

In the M step, the update rule for the parameters is obtained simply by set-
ting the derivative of the expected log likelihood with respect to the parameters
to zero and solving for the parameters?®:

L£L=1In / dHP(H,Y|§) > / dHQ(H) In = F(Q,0), (4)

A=A i) = (Z Yi (ZiX|yJ')T)(Z Aifzixx|y;)) 7! (5)
v= % diag(Z(zi|yj)yjij - Z Ailzix|y;)y;") (6)
mi= 3 S aly;) 0

3.3 Split and Merge EM

The EM algorithm is a hill climbing approach, thus local maxima is a serious
problem of EM. When there are many components in one part of the space,
and too few in another, it might not be possible to move a component from
the overpopulated region to the underpopulated region without passing through

! This is equivalent to minimising the KL-divergence between Q(H) and P(H,Y|6).
2 {.) denotes expectation wrt. Q
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positions that has lower likelihood. To overcome this problem we used split and
merge EM (SMEM) algorithm of Ueda et al. [8].

In the SMEM algorithm, when the model converges using the EM steps
described above, two components are merged into one, and one component is split
into two. Then, only the parameters of these three components are updated until
convergence (referred to as the partial EM procedure). If this helps to increase the
likelihood, the new parameters are accepted, otherwise another set of candidates
are selected for splitting and merging and the partial EM procedure is repeated.
The ordering of the split and merge candidates is important for the speed of the
SMEM algorithm. We have used the criteria given in [8] to sort the candidates
which suggests that the components that share the responsibilities® of many
examples are good candidates for merging:

Tnerse 330 = R TR, @] Y

where R;(6) is the N-dimensional vector consisting of the responsibilities of
the " model for each of the examples. The split criterion uses the local KL
divergence between the local density fi(y) around the kt* model and the density
of the kt* model specified by the current parameters :

fe(y; 0) d

Tspiit (k3 0) = /fk(Y§9) log P(y|zk,0r) Y

where z; denotes the indicator variables of the k** model. The local density is
defined as:

SN 8y —¥n)P(2k|yn; 6)
Son 1 P(2klyn;0)

fe(y;0) = (10)

3.4 Model Selection

An important issue in using MFA is choosing the number of factors (k) and the
number of mixtures (M) to be used. The likelihood of the fit of the model to
data is used to assess the goodness of fit in the maximum likelihood models.
Factor analysis is a constrained Gaussian model, therefore, the best likelihood
one can achieve using a FA is that of the full Gaussian model and the likelihood
gets closer to this limit as the number of factors is increased. Thus, a k value can
be chosen depending on the closeness of the likelihood of different models to the
full Gaussian model. Cross-validation can be used for determining the number of
mixtures, in which several values of M are fit to the data and the log likelihood
on a validation set is used to select the the final value. Alternatively, a Bayesian
analysis in which these parameters are determined automatically may also be
used [1,6].

% rij = (zily;)
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4 Results

We first trained FA models with varying number of factors to decide how much
dimensionality reduction we could have while keeping a good representation of
the data. The results obtained by modelling the raw data was not very promising
since only the likelihood of the models with large number of factors were close to
the limiting likelihood value mentioned in section 3.4. As mentioned in section
3.1, the FA is sensitive to the orientation of the input axis. Therefore we tried to
find a representation of the data that would allow good dimensionality reduction.
Using the Fourier transform coefficients of the data helped to have high likelihood
with lower number of factors (see figure 2 for a comparison). As seen in the figure,
both raw data and Fourier transformed data likelihood converges to the full
Gaussian model likelihood. The Fourier transformed data gets closer to this value
with fewer factors (32 in this case). Therefore, we used the Fourier transformed
data to train the MFA models that had 32 factors per mixture. It should be
emphasised that we have used all coefficients of the Fourier transform obtained
by a linear transform of the data, thus kept all information about the waveforms.
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Fig. 2. Log likelihood for the FA models with only single mixture components trained
with raw data (o) and with Fourier transformed data (*). The solid line shows the full
Gaussian model likelihood, which is the limiting value. Note that using MFA, this limit
can be exceeded, therefore this approach gives only an approximation of the necessary
number of factors

After determining the number of components used in each mixture, the next
step was to find an optimal number of mixtures M in terms of the data likelihood
and neuron isolation. We used a cross-validation scheme of MFA models trained
on the whole waveform to determine M. We evaluated the resulting model by
looking at the value of the entropies, observing the waveforms assigned to dif-
ferent clusters and comparing with manual clustering. In manual clustering the
amplitude of one channel versus another is plotted in 2-D graphs in every possible
combination of the channels, and the human operator manually draws bound-
aries around regions of high spike density. Therefore, we plotted the same kind
of amplitude plots for comparison.

We trained the MFA models using SMEM algorithm to avoid local maxima.
The cross-validation scheme determined M = 9 to be the optimal number of
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clusters. Unfortunately the average entropy of the responsibilities over all test
samples was not as small as expected. In addition, we observed that the spikes
assigned to some of the clusters seemed to be generated from different neurons,
because their waveforms showed large deviations. As a consequence of this, those
clusters were composed of multiple disjoint regions in the the amplitude plots
and therefore did not match with the manual clustering. Thus we concluded that
the clustering was not successful in terms of finding meaningful clusters. This
inability to isolate the spikes with different characteristics is probably due to the
fact that the model gets caught in local maxima where it cannot escape even
with the help of the SMEM. To overcome this problem, we trained a model that
had many more mixtures than the assumed number of neurons and merged some
of the clusters after training, using the merge criteria of the SMEM algorithm.

Training a model with 30 mixtures and merging these clusters after training
resulted in clusters that were similar to those of manual clustering. Specifically
for the data set used in this study, the MFA model found all clusters that were
found in manual clustering with similar boundaries, except for one cluster which
it clustered as a part of noise. On the other hand, the model found some tiny clus-
ters that had double spike waveforms, which correspond to nearly synchronously
firing neurons. Also, the model identified another big cluster as a neuron, which
was assigned to be noise in manual clustering due to its low amplitude. Figure
3 shows the examples that are assigned to different clusters. The trained model
was also used to generate simulated data. As can be seen in figure 3, the sim-
ulated signals are very realistic in the sense that they resemble the recorded
waveforms while showing some deviations.

Furthermore, the entropy of the responsibilities of both the training and test
examples is close to zero, meaning that the model is almost always sure about
to which cluster it should assign an example.

We have also trained a model on the 4 dimensional feature space used in
manual clustering. SMEM algorithm helped to escape from the local maxima
in this lower dimensional space, therefore training with more clusters was not
necessary in this case. The clusters found by this low dimensional model were
similar to the manually found clusters, but the double spike waveforms were not
detected and the low amplitude cluster found by the higher dimensional model
was assigned to the noise cluster, as expected.

5 Conclusion

We have demonstrated a successful approach to spike sorting of tetrode record-
ings using MFA. This method allows to model the whole spike waveforms and
therefore can discriminate between neurons with similar amplitude characteris-
tics across channels and also detect nearly simultaneously occurring spikes. The
entropies of the responsibilities gives a measure of quality of clustering. The
trained model can also be used to synthesise realistic data sets with labels that
can be used to compare different spike sorting methods. A drawback of this
method is that it is not fully unsupervised. The spike waveforms assigned to the
resulting clusters should be assessed by an expert.
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Fig. 3. Recorded samples assigned to different clusters by the model (left) and samples
generated by the model (right). Waveforms produced by (a-f) different neurons, (g-j)
nearly simultaneously firing neurons, (k) noise
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