
Learning from Labeled and Unlabeled Data

Using Random Walks

Dengyong Zhou and Bernhard Schölkopf

Max Planck Institute for Biological Cybernetics
Spemannstr. 38, 72076 Tuebingen, Germany

{dengyong.zhou, bernhard.schoelkopf}@tuebingen.mpg.de

Abstract. We consider the general problem of learning from labeled
and unlabeled data. Given a set of points, some of them are labeled, and
the remaining points are unlabeled. The goal is to predict the labels of
the unlabeled points. Any supervised learning algorithm can be applied
to this problem, for instance, Support Vector Machines (SVMs). The
problem of our interest is if we can implement a classifier which uses the
unlabeled data information in some way and has higher accuracy than
the classifiers which use the labeled data only. Recently we proposed a
simple algorithm, which can substantially benefit from large amounts of
unlabeled data and demonstrates clear superiority to supervised learning
methods. Here we further investigate the algorithm using random walks
and spectral graph theory, which shed light on the key steps in this
algorithm.

1 Introduction

We consider the general problem of learning from labeled and unlabeled data.
Given a set of points, some of them are labeled, and the remaining points are
unlabeled. The task is to predict the labels of the unlabeled points. This is a
setting which is applicable to many real-world problems. We generally need to
also predict the labels of the testing points which are unseen before. However, in
practice, we almost always can add the new points into the set of the unlabeled
data.

Any learning algorithm can be applied to this problem, especially supervised
learning methods, which train the classifiers with the labeled data and then use
the trained classifiers to predict the labels of the unlabeled data. At present, one
of the most popular supervised learning methods is the Support Vector Machine
(SVM) [9]. The problem of interest here is if we can implement a classifier which
uses the unlabeled data in some way and has higher accuracy than the classifiers
which use the labeled data only [10].

Such a learning problem is often called semi-supervised. Since labeling often
requires expensive human labor, whereas unlabeled data is far easier to obtain,
semi-supervised learning is very useful in many real-world problems and has
recently attracted a considerable amount of research. A typical application is
web categorization, in which manually classified web pages are always a very

small part of the entire web, but the number of unlabeled examples can be
almost as large as you want.

Recently we proposed a simple algorithm, which can substantially benefit
from large amounts of unlabeled data and works much better than the supervised
learning methods [11]. Here we further investigate the algorithm using random
walks and spectral graph theory, which shed light on some key steps in this
algorithm, especially normalization.

The paper is organized as follows. In Section 2 we describe our semi-supervised
learning algorithm in details. In Section 3 the method is interpreted in the frame-
work of lazy random walks. In Section 4 we define calculus on discrete objects
and then build the regularization framework of the method upon the discrete
calculus. In Section 5 we use a toy problem to highlight the key steps in the
method, and also validate the method on a large-scale real-world dataset.

2 Algorithm

Given a point set X = {x1, . . . , xl, xl+1, . . . , xn} ⊂ R
m and a label set L =

{−1, 1}, the first l points xi(i ≤ l) are labeled as yi ∈ L and the remaining
points xu(l + 1 ≤ u ≤ n) are unlabeled. Define a n × 1 vector y with yi = 1 or
−1 if xi is labeled as positive or negative, and 0 if xi is unlabeled. We can view
y as a real-valued function defined on X , which assigns a value yi to point xi.
The data is classified as follows:

1. Define a n × n affinity matrix W in which the elements are nonnegative,
symmetric, and furthermore the diagonal elements are zeros.

2. Construct the matrix S = D−1/2WD−1/2 in which D is a diagonal matrix
with its (i, i)-element equal to the sum of the i-th row of W.

3. Compute f = (I − αS)−1y, where I denotes the identity matrix and α is a
parameter in (0, 1), and assign a label sgn(fi) to point xi.

The affinity matrix can typically be defined by a Gaussian Wij = exp(−‖xi −
xj‖2/2σ2) except that Wii = 0, where ‖·‖ represents Euclidean norm. We would
like to emphasize the affinity matrix have not to be derived from a kernel [8].
For instance, construct a k-NN or ε-ball graph on data, and then define Wij = 1
if points xi and xj are connected by an edge, and 0 otherwise. Note that in this
case the requirement Wii = 0 is satisfied automatically since there is no self-loop
edge.

3 Lazy Random Walks

In this section we interpret the algorithm in terms of random walks inspired
by [6]. We will see that this method simply classifies the points by comparing
a specific distance measure between them and the labeled points of different
classes.

Let Γ = (V,E) denote a graph with a set V of n vertices indexed by number
from 1 to n and an edge collection E. Assume the graph is undirected and

connected, and has no self-loops or multiple edges. A weight function w : V ×V →
R associated to the graph satisfies w(i, j) = w(j, i), and w(i, j) ≥ 0. Moreover,
define w(i, j) = 0 if there is no edge between i and j. The degree di of vertex i
is defined to be

di =
∑

j∼i

w(i, j), (3.1)

where j ∼ i denotes the set of the points which are linked to point i.
Let D denote the diagonal matrix with the (i, i)-th entry having value di . Let

W denote the matrix with the entries Wij = w(i, j). A lazy random walk on the
graph is decided by the transition probability matrix P = (1 − α)I + αD−1W.
Here α is a parameter in (0, 1) as before. This means, with the probability
α, following one link which connects the vertex of the current position and is
chosen with the probability proportional to the weight of the link, and with the
probability 1 − α, just staying at the current position.

There exists a unique stationary distribution π = [π1, . . . , πn] for the lazy
random walk, i.e. a unique probability distribution satisfying the balance equa-
tion

π = πP. (3.2)

Let 1 denote the 1 × n vector with all entries equal to 1. Let vol Γ denote the
volume of the graph, which is defined by the sum of vertex degrees. It is not
hard to see that the stationary distribution of the random walk is

π = 1D/vol Γ . (3.3)

Note that π does not depend on α.
Let Xt denote the position of the random walk at time t. Write Tij = min{t ≥

0|Xt = xj , X0 = xi, xi 6= xj} for the first hitting time to xj with the initial
position xi, and write Tii = min{t > 0|Xt = xi, X0 = xi}, which is called
the first return time to xi [1]. Let Hij denote the expected number of steps
required for a random walk to reach xj with an initial position xi, i.e. Hij is
the expectation of Tij . Hij is often called the hitting time. Let Cij denote the
expected number of steps for a random walk starting at xi to reach xj and then
return, i.e. Cij = Hij + Hji, which is often called the commute time between xi

and xj . Clearly, Cij is symmetrical, but Hij may be not.
Let G denote the inverse of the matrix D − αW. Then the commute time

satisfies [6]:

Cij ∝ Gii + Gjj − Gij − Gji, if xi 6= xj , (3.4)

and [1]

Cii = 1/πi. (3.5)

The relation between G and C is similar to the inner product and the norm in
Euclidean space. Let 〈xi, xj〉 denote the Euclidean inner product between xi

and xj . Then the Euclidean norm of the vector xi − xj satisfies

‖xi − xj‖2 = 〈xi − xj , xi − xj〉 = 〈xi, xi〉 + 〈xj , xj〉 − 〈xi, xj〉 − 〈xj , xi〉.

In other words, we can think of G as a Gram matrix which specifies a kind
of inner product on the dataset. The commute time is the corresponding norm
derived from this inner product.

Note that Hij is quite small whenever xj is a node with a large stationary
probability πj . Thus we naturally consider to normalize Hij by

H̄ij =
√

πiπjHij . (3.6)

Accordingly the normalized commute time is

C̄ij = H̄ji + H̄ij . (3.7)

Let Ḡ denote the inverse of the matrix I − αS. Then the normalized commute
time satisfies

C̄ij ∝ Ḡii + Ḡjj − Ḡij − Ḡji. (3.8)

Noting the equality (3.5), we have

Ḡij =
Gij

√

CiiCjj

, (3.9)

which is parallel to the normalized Euclidean product 〈xi, xj〉/‖xi‖‖xi‖ or cosine.
Let

p+(xi) =
∑

{j|yj=1}

Ḡij , and p−(xi) =
∑

{j|yj=−1}

Ḡij . (3.10)

Then the classification given by f = (I−αS)−1y is simply checking which of the
two values p+(xi) or p−(xi) is larger, which is in turn comparing the normalized
commute times to the labeled points of different classes.

If we just want to compare the non-normalized commute times to the differ-
ent class labeled points, then the classification is given by f = (D − αW)−1y.
Although the normalized commute time seems to be a more reasonable choice,
there is still lack of the statistical evidence showing the superiority of the nor-
malized commute time to the non-normalized one. However, we can construct a
subtle toy problem (see Section 5) to essentially expose the necessity of normal-
ization.

4 Regularization Framework

In this section we define calculus on graphs inspired by spectral graph theory [4]
and [3]. A regularization framework for classification problems on graphs then
can be naturally built upon the discrete calculus, and the algorithm derived from
the framework is exactly the method presented in Section 2.

Let F denote the space of functions defined on the vertices of graph Γ, which
assigns a value fi to vertex i. We can view f as a n×1 vector. The edge derivative

of f along the edge e(i, j) at the vertex i is defined to be

∂f

∂e

∣

∣

∣

∣

i

=
√

w(i, j)

(

1√
di

fi −
1

√

dj

fj

)

. (4.1)

Clearly
∂f

∂e

∣

∣

∣

∣

i

= −∂f

∂e

∣

∣

∣

∣

j

. (4.2)

The definition (4.1) in fact splits the function value at each point among the
edges incident with it before computing the local changes of the function, and
the value assigned to each edge is proportional to its weight. This statement can
be clearer if we rewrite (4.1) as

∂f

∂e

∣

∣

∣

∣

i

=

√

w(i, j)

di
fi −

√

w(i, j)

dj
fj .

The local variation of function f at each vertex i is then defined by:

∥

∥∇if
∥

∥ =

√

√

√

√

∑

e`i

(

∂f

∂e

∣

∣

∣

∣

i

)2

, (4.3)

where e ` i means the set of the edges incident with vertex i. The smoothness

of function f is then naturally measured by the sum of the local variations at
each point:

S(f) =
1

2

∑

i

∥

∥∇if
∥

∥

2
. (4.4)

The graph Laplacian is defined to be [4]

∆ = D−1/2(D − W)D−1/2 = I − D−1/2WD−1/2 = I − S, (4.5)

where S is defined to be S = D−1/2WD−1/2. The Laplacian can be thought of
as an operator defined on the function space:

∆f
∣

∣

i
=

1√
di

∑

i∼j

w(i, j)

(

1√
di

fi −
1

√

dj

fj

)

. (4.6)

The smallest eigenvalue of the Laplacian is zero because the largest eigenvalue
of S is 1. Hence the Laplacian is symmetric and positive semi-definite. Let 1

denote the constant function which assumes the value 1 on each vertex. We can
view 1 as a column vector. Then D−1/21 is the eigenvector corresponding to the
smallest eigenvalue of ∆. Most importantly, we have the following equality

fT ∆f = S(f), (4.7)

which exposes the essential relation between the Laplacian and the gradient.
For the classification problem on graphs, it is natural to define the cost

function associated to a classification function f to be

arg min
f∈F

{

S(f) +
µ

2

∥

∥f − y
∥

∥

2

}

. (4.8)

The first term in the bracket is called the smoothness term or regularizer, which
requires the function to be as smooth as possible. The second term is called
the fitting term, which requires the function to be as close to the initial label
assignment as possible. The trade-off between these two competitive terms are
captured by a positive parameter µ. It is not hard to show that the solution of
(4.8) is

f = (1 − α)(I − αS)−1y, (4.9)

where α = 1/(1 + µ). Clearly, it is equivalent to f = (I − αS)−1y.
Finally, we discuss the non-normalized variant of the definition of edge deriva-

tive:
∂f

∂e

∣

∣

∣

∣

i

=
√

w(i, j)
(

fi − fj

)

.

If we further define the graph Laplacian to be L = D − W, then the equality
(4.7) still holds. Substituting the local variation based on the non-normalized
edge derivative into the optimization problem (4.8), we then can obtain a dif-
ferent closed form solution f = µ(µI + L)−1y, which is quite close to the algo-
rithm proposed by [2]. In Section 5, we will provide the experimental evidence
to demonstrate the superiority of the algorithm based on the normalized edge
derivative (4.1).

5 Experiments

5.1 Toy Problem

Shown in Figure 1(a) is the doll toy data, in which the density of the data
varies substantially across different clusters. A similar toy dataset was used by
[7] for clustering problems. The affinity matrix is defined by a Gaussian. The
result given by the algorithm of f = (D−αW)−1y derived from non-normalized
commute time is shown in Figure 1(b). The result given by the algorithm f =
(µI + L)−1y derived from non-normalized edge derivative is shown in Figure
1(c). Obviously, both methods fail to capture the coherent clusters aggregated
by the data. The result given by the algorithm f = (I − αS)−1y, presented in
Section 2, which can be derived from both normalized commute time and edge
derivative is shown in Figure 1(d). This method sensibly classifies the dataset
according with the global data distribution.

In addition, we use the toy problem to demonstrate the importance of zero
diagonal in the first step of the standard algorithm. If we define the affinity
matrix using a RBF kernel without removing the diagonal elements, the result
is shown in Figure 1(e). The intuition behind setting the diagonal elements to
zero is to avoid self-reinforcement.

Finally, we investigate the fitting term of the regularization framework using
the toy problem. Note that we assign a prior label 0 to the unlabeled points in the
fitting term. This is different from the regularization frameworks of supervised
learning methods, in which the fitting term is only for the labeled points. If
we remove the fitting on the unlabeled points, the result is given in Figure 1(f).

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5
(a) Toy data (doll)

labeled point +1
labeled point −1
unlabeled point

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5
(b) Non−normalized commute time

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5
(c) Non−normalized edge derivative

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5
(d) No zero diagonal

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5
(e) No fitting on unlabeled data

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5
(f) Normalized

Fig. 1. Classification on the doll toy data. Both methods in (b) and (c) without normal-
ization fail to classify the points according with the coherent clusters. The importance
of zero diagonal and the fitting on the unlabeled data are demonstrated respectively
in (d) and (e). The result from the standard algorithm is shown in (f).

The intuition behind the fitting on the unlabeled points is to make the algorithm
more stable.

5.2 Digit Recognition

we addressed a classification task using the USPS dataset containing 9298 hand-
written digits. Each digit is a 16x16 image, represented as a 256 dimensional
vector with entries in the range from -1 to 1.

We used k-NN [5] and one-vs-rest SVMs [8] as baselines. Since there is no
reliable approach for model selection if only very few labeled points are available,
we chose the respective optimal parameters of these methods. The k in k-NN
was set to 1. The width of the RBF kernel for the SVM was set to 5. The affinity
matrix used in our method was derived from a RBF kernel with its width equal
to 1.25. In addition, the parameter α was set to 0.95.

The test errors for different methods with the number of labeled points in-
creasing from 10 to 100 are summarized in the left panel of Figure 2, in which
each error point is averaged over 100 random trials, and samples are chosen so
that they contain at least one labeled point for each class. The results shows
clear superiority of our algorithm (marked as random walk) over the supervised
learning methods k-NN and SVMs. The right panel of Figure 2 shows how the
parameter α influences the performances of the method, in which the number of
labeled points is fixed at 50. Obviously, this method is not sensitive to the value
of α.

10 20 30 40 50 60 70 80 90 100
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

labeled points

te
st

 e
rr

or

k−NN (k = 1)
SVM (RBF kernel)
random walk

0.7 0.75 0.8 0.85 0.9 0.95 0.99
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 values of parameter α

te
st

 e
rr

or

Fig. 2. Digit recognition with USPS handwritten 16x16 digits dataset for a total of
9298. The left panel shows test errors for different algorithms with the number of labeled
points increasing from 10 to 100. The right panel shows how the different choices of
the parameter α influence the performance of our method (with 50 labeled points).

Acknowledgments We would like to thank Arthur Gretton for helpful discus-
sions on normalized commute time in random walks.

References

1. D. Aldous and J. Fill. Reversible Markov Chains and Random Walks on Graphs.
In Preparation, http://stat-www.berkeley.edu/users/aldous/RWG/book.html.

2. M. Belkin, I. Matveeva, and P. Niyogi. Regression and regularization on large
graphs. Technical report, University of Chicago, 2003.

3. T. Chan and J. Shen. Variational restoration of non-flat image features: Models
and algorithms. SIAM Journal of Applied Mathematics, 61(4):1338–1361, 2000.

4. F. Chung. Spectral Graph Theory. Number 92 in Regional Conference Series in
Mathematics. American Mathematical Society, 1997.

5. P. A. Devijver and J. Kittier. Pattern Recognition: A Statistical Approach.
Prentice-Hall, London, 1982.

6. J. Ham, D. D. Lee, S. Mika, and B. Schölkopf. A kernel view of the dimensionality
reduction of manifolds. In Proceedings of the 21st International Conference on

Machine Learning, 2004.
7. A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: analysis and an

algorithm. In Advances in Neural Information Processing Systems 14. MIT Press,
Cambridge, MA, 2002.

8. B. Schölkopf and A. J. Smola. Learning with kernels. MIT Press, Cambridge, MA,
2002.

9. V. N. Vapnik. Statistical learning theory. Wiley, NY, 1998.
10. T. Zhang and F. Oles. A probability analysis on the value of unlabeled data for

classification problems. In Proceedings of the 17th International Conference on

Machine Learning, 2000.
11. D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with local

and global consistency. In Advances in Neural Information Processing Systems 16.
MIT Press, Cambridge, MA, 2004.

