

Sparse Gaussian Process Toolbox

Lehel Csató

Max Planck Institute for Biological Cybernetics, Tübingen, Germany Neural Computing Research Group, Aston University, Birmingham

Toolbox Overview

Uses.

- \bullet Gaussian process (\mathcal{GP}) latent model
- Sequential approximation to the posterior
- Sparsification of the resulting process
- \bullet MATLAB programming language
- NETLAB toolbox

Provides:

- \bullet GUI demos for teaching \mathcal{GP} s
- Variety of error or likelihood functions
- Bayesian hyperparameter selection

Freely available from:

- http://www.tuebingen.mpg.de/~csatol
- http://www.ncrg.aston.ac.uk/Projects/SSGP

Gaussian Process Inference

Gaussian process (GP) models are probabilistic kernel methods. GPs specify priors over a function space. Any finite sample from the random function has joint Gaussian distribution with covariance given by a kernel function. The prior is thus

$$p_0(\mathbf{f}) = \frac{1}{(2\pi)^{N/2} |\mathbf{K}_N|^{1/2}} \exp\left(-\frac{1}{2} \mathbf{f}^T \mathbf{K}_N^{-1} \mathbf{f}\right)$$
(1)

$$\mathbf{f} = [f(\mathbf{x}_1), \dots, f(\mathbf{x}_N)]^T$$
 are samples from the function

$$\boldsymbol{K}_{N} = \left\{K_{0}(\boldsymbol{x}_{i}, \boldsymbol{x}_{j} | \theta)\right\}_{i=1}^{N}$$
 is the sample covariance matrix

where $\{m{x}_1,\dots,m{x}_N\}$ are the inputs and θ is the set of parameters of K_0 . For common \mathcal{GP} models the likelihoods factorise:

$$P(\mathcal{D}) = \prod_{n=1}^{N} t(y_n | \mathbf{f}) \doteq \prod_{n=1}^{N} t_n(\mathbf{f})$$

The posterior process is

$$p_{\mathrm{post}}(\boldsymbol{f}) = \frac{1}{Z} p_0(\boldsymbol{f}) P(\mathcal{D}|\boldsymbol{f})$$

For non-Gaussian likelihoods the posterior is not a \mathcal{GP} , thus it is analytically intractable

There are **problems of:**

(solved by) • tractability for non-Gaussian likelihoods: variational appr.

representation for large datasets:

sparse appr.

Approximations to the Posterior

Representation of the posterior moments

Using GP priors, the moments of the posterior process are:

$$\langle f_{\boldsymbol{x}} \rangle_{\text{post}} = \langle f_{\boldsymbol{x}} \rangle_0 + \sum_{i=1}^{N} K_0(\boldsymbol{x}, \boldsymbol{x}_i) \alpha(i)$$

$$(2)$$

$$K(\boldsymbol{x}, \boldsymbol{x}')_{\text{post}} = K_0(\boldsymbol{x}, \boldsymbol{x}') + \sum_{i=1}^{N} K_0(\boldsymbol{x}, \boldsymbol{x}_i) C(ij) K_0(\boldsymbol{x}_j, \boldsymbol{x}')$$

where $\alpha(i)$ and C(ij) are parameters driven by the likelihood function. The representation suggests an approximation: the posterior is approximated by the closest \mathcal{GP} in a KL-sense. The process approximation is reduced to finding the parameters $\alpha = [\alpha(1), \dots, \alpha(N)]^T$ and $C = \{C(i, j)\}_{i,j=1}^N$.

Approximation to the posterior process

The approximations are sequential, including a single case at each step. We use the expectation-propagation (or TAP) algorithm where the posterior is constructed from local Gaussian approximation $\hat{t}_i(f)$ to each factor in the likelihood [Minka 2000; Opper and Winther 2001].

We define the approximating process: $p_{\mathrm{post}}(\boldsymbol{f}) \approx \hat{p}(\boldsymbol{f}) \propto p_0(\boldsymbol{f}) \prod_{n=1}^{N} \hat{t}_n(\boldsymbol{f})$

and compute it using the algorithm:

- Initialise $\hat{t}_n(\mathbf{f}) = 1$ $i = 1, \dots, N$.
- For each input n compute: $p_0^{\setminus n}(\mathbf{f}) \propto \frac{\hat{p}(\mathbf{f})}{\hat{t}_n(\mathbf{f})}$
- Approximate the local posterior and substitute back $\hat{t}_n(\mathbf{f})$ based on:

$$\frac{1}{Z_n} p_0^{\backslash n}(\mathbf{f}) t_n(\mathbf{f}) \approx p_{\text{post}}^n(\mathbf{f}) = \frac{1}{\hat{Z}_n} p_0^{\backslash i}(\mathbf{f}) \hat{t}_n(\mathbf{f}) \quad \Rightarrow \quad t_n(\mathbf{f}) \approx \frac{Z_n}{\hat{Z}_n} \hat{t}_n(\mathbf{f})$$

At the equilibrium point we have an approximation to the marginal likelihood (or evidence) as:

$$Z = \int d\mathbf{f} \ p_0(\mathbf{f}) \prod_{n=1}^{N} t_n(\mathbf{f}) \approx \prod_{n=1}^{N} \frac{Z_n}{\hat{Z}_n} \int d\mathbf{f} \ p_0(\mathbf{f}) \hat{t}_n(\mathbf{f})$$
(4)

Sparsification

If $t_n(\mathbf{f})$ depends only on f_n , then \mathbf{f} reduces to f_n . The random variable f_n can further be eliminated by

$$f_n \to \hat{f}_n = \pi_n f_B$$
, where B is a predefined set of inputs

(B can be from the training/test data) The approximated posterior GP has the mean function and covariance kernel defined as:

$$\begin{split} \langle f_{\boldsymbol{x}} \rangle_{\text{post}} &= \langle f_{\boldsymbol{x}} \rangle_0 + \sum_{i \in \mathsf{B}} K_0(\boldsymbol{x}, \boldsymbol{x}_i) \hat{\boldsymbol{\alpha}}(i) \\ K(\boldsymbol{x}, \boldsymbol{x}')_{\text{post}} &= K_0(\boldsymbol{x}, \boldsymbol{x}') + \sum_{i,j \in \mathsf{B}} K_0(\boldsymbol{x}, \boldsymbol{x}_i) C(\hat{i}j) K_0(\boldsymbol{x}_j, \boldsymbol{x}') \end{split}$$

Important: user control over the size of B. ⇒ possible to use large datasets.

Matlab Implementation

Uses a matlab structure net. The initialisation of the structure with the default values for the fields is done using:

net = ogp(i_{dim} , o_{dim} , covarfn, covpar);

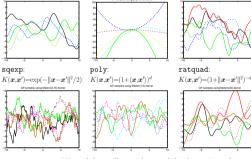
where i_{dim} is the dimension of inputs, \hat{o}_{dim} is the dimension of outputs – one can define pairs of GPs for more than a single latent variable in the likelihood. Associated to each input dimension there is an ARD [MacKay 1992] parameter: $log(\nu)$ =net.inweights

and the kernel functions depend on the weighted product:

$$\langle \boldsymbol{x}, \boldsymbol{x}' \rangle = \sum_i \gamma_i x_i x_i'$$
 which is used in the kernels below

Kernel functions for the prior process

covarfn, covpar define the covariance function for the GP. The kernel hyperparameters are $\theta = \text{covpar}$ The covariance functions are implemented:



user - extensibility of the toolbox with user-defined covariance function (example: Matern kernel) [Stein 1999]:

$$K(\boldsymbol{x}, \boldsymbol{x'}) = \frac{A}{\Gamma(\nu)2^{(\nu-1)}} \left(\sqrt{2\nu}d\right) K_{\nu} \left(\sqrt{2\nu}d\right)$$

where K_{ν} is the modified Bessel function of the second kind. Allows transition from rough covariances to squared exponentials by $\nu \to \infty$

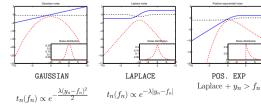
Likelihood models

The toolbox requires a function which returns the local update coefficients from eq. (3). It is specified by

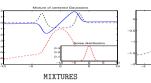
net = ogpinit(net,@likfn,likpar)

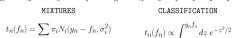
For Gaussian noise model (c_reg_gauss) no approximation is needed.

Implemented likelihood models



Obs: Nonstandard likelihood models are difficult to deal with using conventional kernel methods





POS. EXP

Inference and prediction

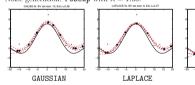
Iterating the following two-steps (EM algorithm):

- Given the set of kernel-, and likelihood parameters, find GP_{ont} using the EP algorithm.
- net = ogptrain(net,xTrain,yTrain,foptions);
- Fixing the GP, optimising the evidence from eq. (4) with respect to hyperparameters. For any kernel parameter θ

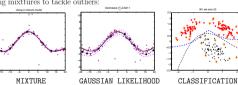
$$\frac{\partial \ln Z}{\partial \theta} = \operatorname{tr} \left[\frac{\partial \ln Z}{\partial \boldsymbol{K}_B} \, \frac{\partial \boldsymbol{K}_B}{\partial \theta} \right]$$

Examples

Noise generation: Posexp with $\lambda = 1.66$.



Using mixtures to tackle outliers:



Acknowledgements

Comments and discussions with Dan Cornford (NCRG), Ian Nabnev (NCRG) Carl Rasmussen (MPI), codes from Ian Nabney (NCRG) and Anton Schwaighofer (TU Graz) are acknowledged.

References

MacKay, D. J. C. (1992). Bayesian interpolation. Neural Computation 4.

Minka, T. P. (2000). Expectation Propagation for Approximate Bayesian Inference, Ph. D. thesis, Dep. of El. Eng. & Comp. Sci.: MIT. vismod.www.media.mit.edu/~tpminka.

Opper, M. and O. Winther (2001). Adaptive and self-averaging TAP mean field theory for probabilistic modeling. Physical Review E 64(056131)

Stein, M. L. (Ed.) (1999). Interpolation of Spatial Data: Some theory for kriging. New York: Springer.