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Toolbox Overview

Approximations to the Posterior

Uses:

o Gaussian process (GP) latent model

e Sequential approximation to the posterior
e Sparsification of the resulting process

o MATLAB programming language

e NETLAB toolbox

Provides:
o GUI demos for teaching GPs
e Variety of error or likelihood functions

e Bayesian hyperparameter selection

Freely available from:
ehttp://www.tuebingen.mpg.de/~csatol
ehttp://www.ncrg.aston.ac.uk/Projects/SSGP

Matlab Implementation

Gaussian Process Inference

Gaussian process (GP) models are probabilistic kernel methods. GPs specify
priors over a function space. Any finite sample from the random function has
joint Gaussian distribution with covariance given by a kernel function. The
prioris thus
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where {@1,..., 2y} are the inputs and 0 is the set of parameters of K. For
common GP models the likelihoods factorise:
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The posterior process is
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For non-Gaussian likelihoods the posterior is not a GP, thus it is analytically
intractable.

There are problems of:
o tractability for non-Gaussian likelihoods:

(solved by)
variational appr.

e representation for large datasets: sparse appr.

Representation of the posterior moments

Using GP priors, the moments of the posterior process are:
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where a(z) and C'(ij) are parameters driven by the likelihood function.
The representation suggests an approximation: the posterior is approximated
by the closest GP in a KL-sense. The pwcess approximation is 1e(lnced to

finding the parameters v = [a(1), .. .. (V)T and € = {C(i, /)}, =1

Approximation to the posterior process

The approximations are sequential, including a single case at each step. We
use the ezpectation-propagation (or TAP) algorithm where the posterior is
constructed from local Gaussian approximation #;(f) to each factor in the
likelihood [Minka 2000; Opper and Winther 2001]

We define the approximating ploccss
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and compute it using the algorithm:
[n(f) =1li=1,...,N.

o Initialise

e For each input n compute: (f) o p( )
| [ py (f) o)
o Approximate the local posterior and substitute back #,,(f) based on:
1 . Z,
Z ) % () = 3 DNin( ) = )~ Sin()
n

n

3)
At the equilibrium point we have an approximation to the marginal likelihood
(or evidence) as:
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Sparsification

If ¢,,(f) depends only on fp, then f reduces to f. The random variable f,
can further be eliminated by

fn— fn=mnfp . where Bis a predefined set of inputs

(B can be from the training/test data) The approximated posterior GP has
the mean function and covariance kernel defined as:
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Important: user control over the size of B. = possible to use large datasets

Uses a matlab structure net. The initialisation of the structure with the
default values for the fields is done using:

net = ogp (igjm » Ogim » cOvarfn, covpar) ;

where 4g;,, is the dimension of inputs, 0g;,, is the dimension of outputs - one
can define pairs of GPs for more than a single latent variable in the likelihood.
Associated to each input dimension there is an ARD [MacKay 1992] parameter:
log(v)=net .inweights

and the kernel functions depend on the weighted product:
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which is used in the kernels below

Kernel functions for the prior process

covarfn, covpar define the covariance
re 0 = covpar The cov:

function for the GP. The kernel hyper-
fuun tions are nupl( ment:
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user - extensibility of the toolbox with user-defined covariance func-
tion (example: Matérn kernel) [Stein 1999]:
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where K, is the modified Bessel function of the second kind. Allows
transition from rough covariances to squared exponentials by v — oo.

Likelihood models

The toolbox requires a function which returns the local update coefficients
from eq. (3). It is specified by

net = ogpinit(net,@likfn,likpar)

For Gaussian noise model (c_reg_gauss) no approximation is needed.

Implemented likelihood models
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Obs: Nonstandard likelihood models are difficult to deal with using conven-
tional kernel methods.
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Inference and prediction

Tterating the following two-steps (EM algorithm):

o Given the set of kernel-, and likelihood parameters, find GP ot using the
EP algorithm.
net = ogptrain(net,xTrain,yTrain,foptions);

o Fixing the GP, optimising the evidence from eq. (4) with respect to hy-
perparameters. For any kernel parameter 6
Oz _ [0lnZ 0Kp
2 —  |0Kp 00
net = ogphyplearn(net,its)

Examples

Noise generation: Posexp with A = 1.66.

GAUSSIAN LAPLACE

Using mixttures to tackle outliers:

MIXTURE GAUSSIAN LIKELIHOOD CLASSIFICATION
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