

# Sparse Gaussian Process Toolbox

## Lehel Csató

Max Planck Institute for Biological Cybernetics, Tübingen, Germany Neural Computing Research Group, Aston University, Birmingham

## Toolbox Overview

#### Uses.

- $\bullet$  Gaussian process  $(\mathcal{GP})$  latent model
- Sequential approximation to the posterior
- Sparsification of the resulting process
- $\bullet$  MATLAB programming language
- NETLAB toolbox

#### Provides:

- $\bullet$  GUI demos for teaching  $\mathcal{GP}$ s
- Variety of error or likelihood functions
- Bayesian hyperparameter selection

## Freely available from:

- http://www.tuebingen.mpg.de/~csatol
- http://www.ncrg.aston.ac.uk/Projects/SSGP

#### Gaussian Process Inference

Gaussian process (GP) models are probabilistic kernel methods. GPs specify priors over a function space. Any finite sample from the random function has joint Gaussian distribution with covariance given by a kernel function. The prior is thus

$$p_0(\mathbf{f}) = \frac{1}{(2\pi)^{N/2} |\mathbf{K}_N|^{1/2}} \exp\left(-\frac{1}{2} \mathbf{f}^T \mathbf{K}_N^{-1} \mathbf{f}\right)$$
(1)

$$\mathbf{f} = [f(\mathbf{x}_1), \dots, f(\mathbf{x}_N)]^T$$
 are samples from the function

$$\boldsymbol{K}_{N} = \left\{K_{0}(\boldsymbol{x}_{i}, \boldsymbol{x}_{j} | \theta)\right\}_{i=1}^{N}$$
 is the sample covariance matrix

where  $\{m{x}_1,\dots,m{x}_N\}$  are the inputs and  $\theta$  is the set of parameters of  $K_0$ . For common  $\mathcal{GP}$  models the likelihoods factorise:

$$P(\mathcal{D}) = \prod_{n=1}^{N} t(y_n | \mathbf{f}) \doteq \prod_{n=1}^{N} t_n(\mathbf{f})$$

The posterior process is

$$p_{\mathrm{post}}(\boldsymbol{f}) = \frac{1}{Z} p_0(\boldsymbol{f}) P(\mathcal{D}|\boldsymbol{f})$$

For non-Gaussian likelihoods the posterior is not a  $\mathcal{GP}$ , thus it is analytically intractable

There are **problems of:** 

(solved by) • tractability for non-Gaussian likelihoods: variational appr.

representation for large datasets:

sparse appr.

## Approximations to the Posterior

## Representation of the posterior moments

Using GP priors, the moments of the posterior process are:

$$\langle f_{\boldsymbol{x}} \rangle_{\text{post}} = \langle f_{\boldsymbol{x}} \rangle_0 + \sum_{i=1}^{N} K_0(\boldsymbol{x}, \boldsymbol{x}_i) \alpha(i)$$

$$(2)$$

$$K(\boldsymbol{x}, \boldsymbol{x}')_{\text{post}} = K_0(\boldsymbol{x}, \boldsymbol{x}') + \sum_{i=1}^{N} K_0(\boldsymbol{x}, \boldsymbol{x}_i) C(ij) K_0(\boldsymbol{x}_j, \boldsymbol{x}')$$

where  $\alpha(i)$  and C(ij) are parameters driven by the likelihood function. The representation suggests an approximation: the posterior is approximated by the closest  $\mathcal{GP}$  in a KL-sense. The process approximation is reduced to finding the parameters  $\alpha = [\alpha(1), \dots, \alpha(N)]^T$  and  $C = \{C(i, j)\}_{i,j=1}^N$ .

## Approximation to the posterior process

The approximations are sequential, including a single case at each step. We use the expectation-propagation (or TAP) algorithm where the posterior is constructed from local Gaussian approximation  $\hat{t}_i(f)$  to each factor in the likelihood [Minka 2000; Opper and Winther 2001].

We define the approximating process:  $p_{\mathrm{post}}(\boldsymbol{f}) \approx \hat{p}(\boldsymbol{f}) \propto p_0(\boldsymbol{f}) \prod_{n=1}^{N} \hat{t}_n(\boldsymbol{f})$ 

and compute it using the algorithm:

- Initialise  $\hat{t}_n(\mathbf{f}) = 1$   $i = 1, \dots, N$ .
- For each input n compute:  $p_0^{\setminus n}(\mathbf{f}) \propto \frac{\hat{p}(\mathbf{f})}{\hat{t}_n(\mathbf{f})}$
- Approximate the local posterior and substitute back  $\hat{t}_n(\mathbf{f})$  based on:

$$\frac{1}{Z_n} p_0^{\backslash n}(\mathbf{f}) t_n(\mathbf{f}) \approx p_{\text{post}}^n(\mathbf{f}) = \frac{1}{\hat{Z}_n} p_0^{\backslash i}(\mathbf{f}) \hat{t}_n(\mathbf{f}) \quad \Rightarrow \quad t_n(\mathbf{f}) \approx \frac{Z_n}{\hat{Z}_n} \hat{t}_n(\mathbf{f})$$

At the equilibrium point we have an approximation to the marginal likelihood (or evidence) as:

$$Z = \int d\mathbf{f} \ p_0(\mathbf{f}) \prod_{n=1}^{N} t_n(\mathbf{f}) \approx \prod_{n=1}^{N} \frac{Z_n}{\hat{Z}_n} \int d\mathbf{f} \ p_0(\mathbf{f}) \hat{t}_n(\mathbf{f})$$
(4)

#### **Sparsification**

If  $t_n(\mathbf{f})$  depends only on  $f_n$ , then  $\mathbf{f}$  reduces to  $f_n$ . The random variable  $f_n$ can further be eliminated by

$$f_n \to \hat{f}_n = \pi_n f_B$$
, where B is a predefined set of inputs

(B can be from the training/test data) The approximated posterior GP has the mean function and covariance kernel defined as:

$$\begin{split} \langle f_{\boldsymbol{x}} \rangle_{\text{post}} &= \langle f_{\boldsymbol{x}} \rangle_0 + \sum_{i \in \mathsf{B}} K_0(\boldsymbol{x}, \boldsymbol{x}_i) \hat{\boldsymbol{\alpha}}(i) \\ K(\boldsymbol{x}, \boldsymbol{x}')_{\text{post}} &= K_0(\boldsymbol{x}, \boldsymbol{x}') + \sum_{i,j \in \mathsf{B}} K_0(\boldsymbol{x}, \boldsymbol{x}_i) C(\hat{i}j) K_0(\boldsymbol{x}_j, \boldsymbol{x}') \end{split}$$

Important: user control over the size of B. ⇒ possible to use large datasets.

## Matlab Implementation

Uses a matlab structure net. The initialisation of the structure with the default values for the fields is done using:

net = ogp( $i_{dim}$ ,  $o_{dim}$ , covarfn, covpar);

where  $i_{dim}$  is the dimension of inputs,  $\hat{o}_{dim}$  is the dimension of outputs – one can define pairs of GPs for more than a single latent variable in the likelihood. Associated to each input dimension there is an ARD [MacKay 1992] parameter:  $log(\nu)$ =net.inweights

and the kernel functions depend on the weighted product:

$$\langle \boldsymbol{x}, \boldsymbol{x}' \rangle = \sum_i \gamma_i x_i x_i'$$
 which is used in the kernels below

## Kernel functions for the prior process

covarfn, covpar define the covariance function for the GP. The kernel hyperparameters are  $\theta = \text{covpar}$  The covariance functions are implemented:



user - extensibility of the toolbox with user-defined covariance function (example: Matern kernel) [Stein 1999]:

$$K(\boldsymbol{x}, \boldsymbol{x'}) = \frac{A}{\Gamma(\nu)2^{(\nu-1)}} \left(\sqrt{2\nu}d\right) K_{\nu} \left(\sqrt{2\nu}d\right)$$

where  $K_{\nu}$  is the modified Bessel function of the second kind. Allows transition from rough covariances to squared exponentials by  $\nu \to \infty$ 

#### Likelihood models

The toolbox requires a function which returns the local update coefficients from eq. (3). It is specified by

net = ogpinit(net,@likfn,likpar)

For Gaussian noise model (c\_reg\_gauss) no approximation is needed.

#### Implemented likelihood models



Obs: Nonstandard likelihood models are difficult to deal with using conventional kernel methods







POS. EXP

## Inference and prediction

Iterating the following two-steps (EM algorithm):

- Given the set of kernel-, and likelihood parameters, find GP<sub>ont</sub> using the EP algorithm.
- net = ogptrain(net,xTrain,yTrain,foptions);
- Fixing the GP, optimising the evidence from eq. (4) with respect to hyperparameters. For any kernel parameter  $\theta$

$$\frac{\partial \ln Z}{\partial \theta} = \operatorname{tr} \left[ \frac{\partial \ln Z}{\partial \boldsymbol{K}_B} \, \frac{\partial \boldsymbol{K}_B}{\partial \theta} \right]$$

## **Examples**

Noise generation: Posexp with  $\lambda = 1.66$ .



Using mixtures to tackle outliers:



## Acknowledgements

Comments and discussions with Dan Cornford (NCRG), Ian Nabnev (NCRG) Carl Rasmussen (MPI), codes from Ian Nabney (NCRG) and Anton Schwaighofer (TU Graz) are acknowledged.

#### References

MacKay, D. J. C. (1992). Bayesian interpolation. Neural Computation 4.

Minka, T. P. (2000). Expectation Propagation for Approximate Bayesian Inference, Ph. D. thesis, Dep. of El. Eng. & Comp. Sci.: MIT. vismod.www.media.mit.edu/~tpminka.

Opper, M. and O. Winther (2001). Adaptive and self-averaging TAP mean field theory for probabilistic modeling. Physical Review E 64(056131)

Stein, M. L. (Ed.) (1999). Interpolation of Spatial Data: Some theory for kriging. New York: Springer.