
Fast Pattern Selection Algorithm for Support Vector
Classifiers: Time Complexity Analysis

Hyunjung Shin and Sungzoon Cho

Department of Industrial Engineering, Seoul National University,
San 56-1, Shillim-Dong, Kwanak-Gu, 151-742, Seoul, Korea

{hjshin72, zoon}@snu.ac.kr

Abstract. Training SVM requires large memory and long cpu time
when the pattern set is large. To alleviate the computational burden
in SVM training, we propose a fast preprocessing algorithm which se-
lects only the patterns near the decision boundary. The time complexity
of the proposed algorithm is much smaller than that of the naive M2

algorithm

1 Introduction

In SVM QP formulation, the dimension of kernel matrix (M ×M) is equal to
the number of training patterns (M). A standard QP solver has time complex-
ity of order O(M3) and a decomposition method has (the number of iterations)·
O(Mq + q3) where q is the size of the working set. Of course, “the number of
iterations” is supposed to increase as M increases [3, 4].

One way to circumvent this computational burden is to select only the train-
ing patterns, in advance, that are more likely to be support vectors. In a classifi-
cation problem, the support vectors are distributed near the decision boundary.
Therefore, selecting those patterns (potential support vectors) prior to SVM
training is quite desirable. Recently, we proposed to select the patterns near the
decision boundary based on the neighborhood properties [5]. The first property
dictates that a pattern located near the decision boundary tends to have more
heterogeneous neighbors. The second property dictates that a pattern on the
correct side of the decision boundary tends to belong to the same class as its
neighbors. Two measures utilizing these properties reduced the number of pat-
terns significantly, thus reduced the training time. However, a naive algorithm
evaluating kNNs for all patterns took O(M2), so the pattern selection process
itself was time consuming.

In this paper, we propose a fast algorithm. Here, we just compute the kNNs
of the patterns near the decision boundary, not all training patterns. The idea
comes from another neighborhood property that the neighbors of the pattern
located near the decision boundary tend to be located near the decision bound-
ary as well. The time complexity of the fast algorithm is approximately O(bM),
where b is the number of patterns in the “overlap” region around decision bound-
ary. In most practical problems, b ¿ M holds.

This paper is structured as follows. In section 2, we propose the fast algo-
rithm which selects the patterns near the decision boundary. In section 3, we
provide the time complexity analysis of the algorithm. In section 4, we present
the empirical results confirming the time complexity of our algorithm. In the
last section, we conclude the paper with the discussion of the limitations.

2 Fast Algorithm based on Neighborhood Properties

The first neighborhood property is that a pattern located near the decision bound-
ary tends to have heterogeneous neighbors. Thus, the degree of pattern x’s prox-
imity to the decision boundary can be estimated by “Neighbors Entropy(x)”,
which is defined as the entropy of pattern x’s k-nearest neighbors’ class labels
(see Fig. 1). A pattern with a positive Neighbors Entropy(x) value is assumed
to be located near the decision boundary. The second neighborhood property is
that a pattern on the correct side of the decision boundary tends to belong to
the same class as its neighbors. If a pattern’s own label is very different from
those of its neighbors, it is likely to be incorrectly labeled. The measure “Neigh-

bors Match(x)” is defined as the ratio of x’s neighbors whose label matches
that of x. Only those pattern xs are selected that satisfy Neighbors Match(x)
≥ β · 1

J (J is the number of classes and 0 < β ≤ 1) among the patterns with
positive Neighbors Entropy(x) values.

LabelProbability(x) f
/* For x, calculate the label probabilities of kNN(x) over J classes,
{C1, C2, . . . , CJ}, where kNN(x) is defined as the set of k nearest
neighbors of x.*/.

kj = |{x′ ∈ Cj |x′ ∈ kNN(x)}|, j = 1, . . . , J .

return
(
Pj =

kj

k
, ∀j

)
.

g
Neighbors Entropy(x) f

/* Calculate the neighbors-entropy of x with its nearest neighbors’ labels.
In all calculations, 0 logJ

1
0

is defined to be 0. */

Do LabelProbability(x).
return

(∑J

j=1
Pj · logJ

1
Pj

)
.

g
Neighbors Match(x) f

/* Calculate the neighbors-match of x. j∗ is defined as the label of x itself.*/

j∗ = arg
j

{Cj | x ∈ Cj , j = 1, . . . , J}.
Do LabelProbability(x).
return (Pj∗).g

Fig. 1. Neighbors Entropy and Neighbors Match functions

A naive algorithm was presented in [5] where the kNNs of all patterns were
evaluated. This algorithm is easy to implement and also runs in a reasonable
amount of time as long as the size of training set, M , is relatively small. How-
ever, when the size of training set is large, the computational cost increases
in proportion to the size. Let us assume that the distance between any two
points in d-dimensional space can be computed in O(d). Then finding the near-
est neighbors for “each pattern” takes sum of distance computation time DT,
O (d(M − 1)), and search time ST, O (k(M − 1)). The total time complexity of
the naive algorithm for all patterns, therefore, is O (M · (DT + ST)). Roughly
speaking, it is O(M2) if we suppose d ¿ M and k ¿ M . There is a considerable
amount of literature on efficient nearest neighbor searching algorithms for large
data sets of a high dimension. Most approaches focus on reducing DT or ST.
See [1, 2, 6].

Our approach, on the other hand, focuses on reducing the first M of O(M ·M).
The idea comes from yet another neighborhood property that the neighbors of a
pattern located near the decision boundary tend to be located near the decision
boundary as well. Given a set of randomly selected patterns, we examine the
patterns near the decision boundary and their neighbors only. This successive
“neighbors” only evaluation of the “current” pattern set is repeated until all
the patterns near the decision boundary are chosen and evaluated. A pattern is
“expanded” or a pattern’s neighbors are evaluated when its Neighbors Entropy
is positive. This “selective kNN expanding” procedure is shown in Fig. 2 using
notations displayed in Table 1.

Table 1. Notation

Symbol Meaning

D the original training set whose cardinality is M
Di

e the evaluation set at i-th step
Di

o a subset of Di
e, the set of patterns to be “expanded” from Di

e

each element of which will compute its k nearest neighbors
to constitute the next evaluation set, Di+1

e

Di
x a subset of Di

e, the set of patterns “not to be expanded” from Di
e,

or Di
x = Di

e −Di
o

Di
s the set of “selected” patterns from Di

o at i-th step

Si
o the accumulated set of expanded patterns,

i−1⋃
j=0

Dj
o

Si
x the accumulated set of non-expanded patterns,

i−1⋃
j=0

Dj
x

SSi the accumulated set of selected patterns,
i−1⋃
j=0

Dj
s

the last of which SSN is the reduced training pattern set
kNN(x) the set of k nearest neighbors of x
B the set of patterns located in the “overlapped” region

characterized by Neighbors Entropy (x) > 0
B+ the set of k nearest neighbors of patterns belonging to B

Selective-kNN-Expanding() f
[0] Initialize D0

e with randomly chosen patterns from D.
Constants k and J are given. Initialize i and various sets as follows:
i ← 0, S0

o ← ∅, S0
x ← ∅, SS0 ← ∅.

while Di
e 6= ∅ do

[1] Choose x satisfying [Expanding Criteria].
Di

o ← {x | Neighbors Entropy (x) > 0, x ∈ Di
e}.

Di
x ← Di

e −Di
o.

[2] Select x satisfying [Selecting Criteria].
Di

s ← {x | Neighbors Match (x) ≥ β/J, x ∈ Di
o}.

[3] Update the pattern sets: the expanded, the non-expanded, and the selected.
Si+1

o ← Si
o ∪Di

o , Si+1
x ← Si

x ∪Di
x , SSi+1 ← SSi ∪Di

s.

[4] Compute the next evaluation set Di+1
e .

Di+1
e ← ⋃

x∈Di
o

kNN(x)− (Si+1
o ∪ Si+1

x).

[5] i ← i + 1.
end
return SSig

Fig. 2. Selective kNN Expanding algorithm

3 The Time Complexity Analysis of the Fast Algorithm

Now, we show that the fast algorithm terminates within a finite number of steps
and its time complexity is significantly smaller than that of the naive algorithm.

Lemma 1. Different evaluation sets are disjoint:
Di

e ∩Dj
e = ∅, ∀ i 6= j. (1)

Proof. Consider step [4] of the algorithm shown in Fig.2,

Di
e =


 ⋃

x∈Di−1
o

kNN(x)


− (Si

o ∪ Si
x). (2)

Since Si
o and Si

x are defined as
(

i−1⋃
j=0

Dj
o

)
and

(
i−1⋃
j=0

Dj
x

)
respectively,

Si
o ∪ Si

x =

i−1⋃
j=0

(
Di

o ∪Di
x

)
=

(
i−1⋃
j=0

Dj
e

)
. (3)

By replacing
(
Si

o ∪ Si
x

)
in Eq.(2) with Eq.(3), we get

Di
e =


 ⋃

x∈Di−1
o

kNN(x)


−

(
i−1⋃
j=0

Dj
e

)
. (4)

Eq.(4) clearly shows that Di
e does not share patterns with any of its earlier sets.

Lemma 2. The union of all Di
e’s is equivalent to the set of kNN’s of the union

of all Di
o’s. (

n⋃
i=1

Di
e

)
=


 ⋃

x∈D0
o∪D1

o∪···∪Dn−1
o

kNN(x)


 . (5)

Proof. From Eq.(4) in Lemma 1, we get
n⋃

i=1

Di
e =

n⋃
i=1


 ⋃

x∈Di−1
o

kNN(x)


−

n⋃
i=1

(
i−1⋃
j=0

Dj
e

)
. (6)

Since in general(⋃
x∈A1

kNN(x)

)⋃(⋃
x∈A2

kNN(x)

)
=

(⋃
x∈A1∪A2

kNN(x)

)
(7)

holds, we get(
n⋃

i=1

Di
e

)
=


 ⋃

x∈D0
o∪D1

o∪···∪Dn−1
o

kNN(x)


−

(
n−1⋃
i=0

Di
e

)
. (8)

If we union
(

n−1⋃
i=0

Di
e

)
to both sides of Eq.(8), then

(
n⋃

i=0

Di
e

)
=


 ⋃

x∈D0
o∪D1

o∪···∪Dn−1
o

kNN(x)


⋃(

n−1⋃
i=0

Di
e

)
(9)

results. Since Di
e ⊆

⋃
x∈Di−1

o

kNN(x), i = 1, . . . , n,
(

n−1⋃
i=1

Di
e

)
, the last n − 1

components of the second factor of the right hand side may vanish. Then, we
finally have (

n⋃
i=1

Di
e

)⋃
D0

e =


 ⋃

x∈D0
o∪D1

o∪···∪Dn−1
o

kNN(x)


⋃

D0
e. (10)

If we consider only the relationship after the first iteration, then D0
e from both

sides of Eq.(10) is not to be included. Now, the lemma is proved.

Lemma 3. Every expanded set Di
o is a subset of B, the set of patterns in the

overlapped region.
Di

o ⊆ B, ∀i (11)

Proof. Recall that in the proposed algorithm, Di
o is defined as

Di
o = {x | Neighbors Entropy (x) > 0, x ∈ Di

e}. (12)

Compare it with the definition of B
B = {x | Neighbors Entropy (x) > 0, x ∈ D}. (13)

Since Di
e’s are subsets of D, Di

o’s are subsets of B.

Lemma 4. Different expanded sets Di
o’s are disjoint.

Di
o ∩Dj

o = ∅, ∀i 6= j (14)

Proof. Every expanded set is a subset of the evaluation set by definition (see
step[1] in the algorithm)

Di
o ⊆ Di

e, ∀i. (15)

By Lemma 1, Di
e’s are disjoint from others for all i’s. Therefore, their respective

subsets are disjoint, too.

Theorem 1. (Termination of the Algorithm) If the while loop of the proposed
algorithm exits after N iterations, then N is finite.

Proof. We show that N < ∞. Inside the while-loop of the algorithm(Fig.2),
condition Di+1

e 6= ∅ holds. Therefore, Di
o 6= ∅, i = 0, . . . , N − 1. That means

n(Di
o) ≥ 1, i = 0, . . . , N−1. Since Si

o is defined as
i−1⋃
j=0

Dj
o, and Dj

o’s are disjoint

(Lemma 4), we get
n(Si

o) =

i−1∑
j=0

n(Dj
o). (16)

Since n(Di
o) ≥ 1, i = 0, . . . , N − 1, n(Si

o) is monotonically increasing. In the
meantime, the union of all the Dj

o’s generated in the while loop is bounded by
B (Lemma 3). So, we obtain N−1⋃

j=0

Dj
o ⊆ B. (17)

Now, Lemma 4 leads us to
N−1∑
j=0

n(Dj
o) ≤ n(B). (18)

Combination of Eq.(16) and Eq.(18) results in
n(SN

o) ≤ n(B). (19)

Since n(B) ¿ M and finite, n(SN
o) is finite. Thus, N is finite.

Theorem 2. (The Number of Pattern Evaluation) The number of patterns
whose kNNs are evaluated is

(
r · n(BC) + n(B+)

)
, where BC is the comple-

ment set of B or D−B, and r is the proportion of initial random sampling,
(0 < r < 1).

Proof. The number of patterns whose kNNs are evaluated is denoted as
N∑

i=0

n(Di
e).

Let us first consider cases from i = 1 to N . We have
N∑

i=1

n(Di
e) = n

(
N⋃

i=1

Di
e

)
by Lemma 1

= n


 ⋃

x∈D0
o∪D1

o∪···∪DN−1
o

kNN(x)


 by Lemma 2

≤ n

(⋃
x∈B

kNN(x)

)
by Lemma 3

= n(B+). (20)

Let us include the case of i = 0.
N∑

i=0

n(Di
e) ≤ n(D0

e) + n(B+), (21)

where n(D0
e) is approximately r ·n(D) because D0

e is randomly chosen from D.
In the meantime, some patterns of D0

e are already counted in n(B+). The number
of those pattern amounts to n(D0

o) since D0
o = {x | Neighbors Entropy (x) >

0, x ∈ D0
e} and D0

o ⊆ B ⊆ B+. To get a tighter bound, therefore, we calculate
n(D0

e −D0
o) (≤ n(D0

e))
n(D0

e −D0
o) = n(D0

e)− n(D0
o)

≈ n(D0
e)− n(D0

e) · n(B)

n(D)

= r · n(D)− r · n(D) · n(B)

n(D)

= r · n(BC), (22)

where D0
o ⊆ D0

e and n(D0
e −D0

o) denotes the number of the patterns which do
not belong to B. Thus, we get the following bound by Eq.(20) and Eq.(22):

N∑
i=0

n(Di
e) ≤ r · n(BC) + n(B+).

The time complexity of the fast algorithm is (r·bC+b+)·M where bC = n(BC)
and b+ = n(B+). Practically, bC is almost as large as M , i.e., bC ≈ M . But the
initial sampling ratio r is usually quite small, i.e., r ¿ 1. Thus the first term
r · bCM may be assumed to be insignificant. In most real world problems, b+ is
just slightly larger than b, thus the second term b+M can be approximated to
bM . In short, (r · bc + b+)M can be simplified as bM , which of course is much
smaller than M2 since b ¿ M .

4 Experimental Results

The fast algorithm runs in bM , roughly speaking. We now show whether the
complexity stands in the practical situations through experiments. A total of
M patterns, half of M from each class, were randomly generated from a pair of
two-dimensional uniform distributions:

Cj =
{
x | U

([−1

(−1+(−1)j+1

2
+ (−1)jb

2M
)

]
< x <

[
1

(1+(−1)j+1

2
+ (−1)jb

2M
)

])}
, j = 1, 2.

We set b to every decile of M , i.e. b= 0, 0.1M , 0.2M , · · · , 0.9M , M . Fig. 3 shows
the actual computation time for various values of b when (a) M=1,000 and (b)
M=10,000, respectively. Compare with the Naive algorithm’s computation time
that is constant regardless of b. They clearly show that computation time is
exactly proportional to b.

(a) M = 1, 000 (b) M = 10, 000

Fig. 3. Actual computation time for various values of b

5 Conclusion

We proposed a fast pattern selection algorithm which takes O(bM) time. Cur-
rently, however, there are two limitations. First, the proposed algorithm was
developed under the assumption that the classes are overlapped. Therefore, if
one class is remote and clearly separable from the other, an empty set will be
returned as a selected pattern set. Second, the number of neighbors, k, was em-
pirically set to 4 in the experiment. A more scientific method is currently under
investigation.

References

[1] Arya, S., Mount, D.M., Netanyahu, N.S. and Silverman, R., (1998). An Optimal
Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions,
Jornal of the ACM, vol. 45, no. 6, pp. 891–923.

[2] Grother, P.J.,Candela, G.T. and Blue, J.L, (1997). Fast Implementations of Near-
est Neighbor Classifiers, Pattern Recognition, vol. 30, no. 3, pp. 459–465.

[3] Hearst, M.A., Scholkopf, B., Dumais, S., Osuna, E., and Platt, J., (1998). Trends
and Controversies - Support Vector Machines, IEEE Intelligent Systems, vol. 13,
pp. 18–28.

[4] Platt, J.C. (1999). Fast Training of Support Vector Machines Using Sequential
Minimal Optimization, Advances in Kernel Methods: Support Vector Machines,
MIT press, Cambridge, MA, pp. 185–208.

[5] Shin, H.J. and Cho, S., (2002). Pattern Selection For Support Vector Classifiers,
Proc. of the 3rd International Conference on Intelligent Data Engineering and
Automated Learning (IDEAL), Manchester, UK, pp. 469–474.

[6] Short, R., and Fukunaga, (1981). The Optimal Distance Measure for Nearest
Neighbor Classification, IEEE Transactions on Information and Theory, vol. IT–
27, no. 5, pp. 622–627.

