
Analysis of Some Methods for Reduced Rank
Gaussian Process Regression

Joaquin Quiñonero-Candela1,2 and Carl Edward Rasmussen2

1 Informatics and Mathematical Modelling, Technical University of Denmark,
Richard Petersens Plads, B321, 2800 Kongens Lyngby, Denmark

jqc@imm.dtu.dk
2 Max Planck Institute for Biological Cybernetics,

Spemann straße 38, 72076 Tübingen, Germany
carl@tuebingen.mpg.de

Abstract. While there is strong motivation for using Gaussian Pro-
cesses (GPs) due to their excellent performance in regression and classi-
fication problems, their computational complexity makes them imprac-
tical when the size of the training set exceeds a few thousand cases. This
has motivated the recent proliferation of a number of cost-effective ap-
proximations to GPs, both for classification and for regression. In this
paper we analyze one popular approximation to GPs for regression: the
reduced rank approximation. While generally GPs are equivalent to in-
finite linear models, we show that Reduced Rank Gaussian Processes
(RRGPs) are equivalent to finite sparse linear models. We also introduce
the concept of degenerate GPs and show that they correspond to inap-
propriate priors. We show how to modify the RRGP to prevent it from
being degenerate at test time. Training RRGPs consists both in learn-
ing the covariance function hyperparameters and the support set. We
propose a method for learning hyperparameters for a given support set.
We also review the Sparse Greedy GP (SGGP) approximation (Smola
and Bartlett, 2001), which is a way of learning the support set for given
hyperparameters based on approximating the posterior. We propose an
alternative method to the SGGP that has better generalization capa-
bilities. Finally we make experiments to compare the different ways of
training a RRGP. We provide some Matlab code for learning RRGPs.

1 Motivation and Organization of the Paper

Gaussian Processes (GPs) have state of the art performance in regression and
classification problems, but they suffer from high computational cost for learning
and predictions. For a training set containing n cases, the complexity of training
is O(n3) and that of making a prediction is O(n) for computing the predictive
mean, and O(n2) for computing the predictive variance.

A few computationally effective approximations to GPs have recently been
proposed. These include the sparse iterative schemes of Csató (2002), Csató and
Opper (2002), Seeger (2003), and Lawrence et al. (2003), all based on mini-
mizing KL divergences between approximating and true posterior; Smola and

Schölkopf (2000) and Smola and Bartlett (2001) based on low rank approxi-
mate posterior, Gibbs and MacKay (1997) and Williams and Seeger (2001) on
matrix approximations and Tresp (2000) on neglecting correlations. Subsets of
regressors (Wahba et al., 2000) and the Relevance Vector Machine (Tipping,
2001) can also be cast as sparse linear approximations to GPs. Schwaighofer and
Tresp (2003) provide a very interesting yet brief comparison of some of these
approximations to GPs. They only address the quality of the approximations in
terms of the predictive mean, ignoring the predictive uncertainties, and leaving
some theoretical questions unanswered, like the goodness of approximating the
maximum of the posterior.

In this paper we analyze sparse linear or equivalently reduced rank approx-
imations to GPs that we will call Reduced Rank Gaussian Processes (RRGPs).
We introduce the concept of degenerate Gaussian Processes and explain that
they correspond to inappropriate priors over functions (for example, the predic-
tive variance shrinks as the test points move far from the training set). We show
that if not used with care at prediction time, RRGP approximations result in
degenerate GPs. We give a solution to this problem, consisting in augmenting
the finite linear model at test time. This guarantees that the RRGP approach
corresponds to an appropriate prior. Our analysis of RRGPs should be of inter-
est in general for better understanding the infinite nature of Gaussian Processes
and the limitations of diverse approximations (in particular of those based solely
on the posterior distribution).

Learning RRGPs implies both selecting a support set, and learning the hy-
perparameters of the covariance function. Doing both simultaneously proves to
be difficult in practice and questionable theoretically. Smola and Bartlett (2001)
proposed the Sparse Greedy Gaussian Process (SGGP), a method for learning
the support set for given hyperparameters of the covariance function based on
approximating the posterior. We show that approximating the posterior is un-
satisfactory, since it fails to guarantee generalization, and propose a theoretically
more sound greedy algorithm for support set selection based on maximizing the
marginal likelihood. We show that the SGGP relates to our method in that
approximating the posterior reduces to partially maximizing the marginal like-
lihood. We illustrate our analysis with an example. We propose an approach for
learning the hyperparameters of the covariance function of RRGPs for a given
support set, originally introduced by Rasmussen (2002). We also provide Matlab
code in App. B for this method.

We make experiments where we compare learning based on selecting the
support set to learning based on inferring the hyperparameters. We give special
importance to evaluating the quality of the different approximations to comput-
ing predictive variances.

The paper is organized as follows. We give a brief introduction to GPs in
Sect. 2. In Sect. 3 we establish the equivalence between GPs and linear models,
showing that in the general case GPs are equivalent to infinite linear models.
We also present degenerate GPs. In Sect. 4 introduce RRGPs and address the

issue of training them. In Sect. 5 we present the experiments we conducted. We
give some discussion in Sect. 6.

2 Introduction to Gaussian Processes

In inference with parametric models prior distributions are often imposed over
the model parameters, which can be seen as a means of imposing regularity and
improving generalization. The form of the parametric model, together with the
form of the prior distribution on the parameters result in a (often implicit) prior
assumption on the joint distribution of the function values. At prediction time
the quality of the predictive uncertainty will depend on the prior over functions.
Unfortunately, for probabilistic parametric models this prior is defined in an
indirect way, and this in many cases results in priors with undesired properties.
An example of a model with a peculiar prior over functions is the Relevance
Vector Machine introduced by Tipping (2001) for which the predictive variance
shrinks for a query point far away from the training inputs. If this property
of the predictive variance is undesired, then one concludes that the prior over
functions was undesirable in the first place, and one would have been happy to
be able to directly define a prior over functions.

Gaussian Processes (GPs) are non-parametric models where a Gaussian pro-
cess3 prior is directly defined over function values. The direct use of Gaussian
Processes as priors over functions was motivated by Neal (1996) as he was study-
ing priors over weights for artificial neural networks. A model equivalent to GPs,
kriging, has since long been used for analysis of spatial data in Geostatistics
(Cressie, 1993). In a more formal way, in a GP the function outputs f(xi) are
a collection random variables indexed by the inputs xi. Any finite subset of
outputs has a joint multivariate Gaussian distribution (for an introduction on
GPs, and thorough comparison with Neural Networks see (Rasmussen, 1996)).
Given a set of training inputs {xi|i = 1, . . . , n} ⊂ RD (organized as rows in
matrix X), the joint prior distribution of the corresponding function outputs
f = [f(x1), . . . , f(xn)]> is Gaussian p(f |X, θ) ∼ N (0,K), with zero mean (this
is a common and arbitrary choice) and covariance matrix Kij = K(xi,xj). The
GP is entirely determined by the covariance function K(xi,xj) with parameters
θ.

An example of covariance function that is very commonly used is the squared
exponential:

K(xi,xj) = θ2
D+1 exp

(
−1

2

D∑
d=1

1
θ2

d

(Xid −Xjd)
2

)
. (1)

θD+1 relates to the amplitude of the functions generated by the GP, and θd is
a lengthscale in the d-th dimension that allows for Automatic Relevance De-
termination (ARD) (MacKay, 1994; Neal, 1996): if some input dimensions are
3 We will use the expression “Gaussian Process” (both with capital first letter) or

“GP” to designate the non-parametric model where a Gaussian process prior is
defined over function values

un-informative about the covariance between observed training targets, their as-
sociated θd will be made large (or effectively infinite) and the corresponding input
dimension will be effectively pruned from the model. We will call the parameters
of the covariance function hyperparameters, since they are the parameters of the
prior.

In general, inference requires choosing a parametric form of the covariance
function, and either estimating the corresponding parameters θ (which is named
by some Maximum Likelihood II, or second level of inference) or integrating them
out (often through MCMC). We will make the common assumption of Gaussian
independent identically distributed output noise, of variance σ2. The training
outputs y = [y1, . . . , yn]> (or targets) are thus related to the function evaluated
at the training inputs by a likelihood distribution4 p(y|f , σ2) ∼ N (f , σ2 I), where
I is the identity matrix. The posterior distribution over function values is useful
for making predictions. It is obtained by applying ‘Bayes’ rule:5

p(f |y, X, θ, σ2) =
p(y|f , σ2) p(f |X, θ)

p(y|X, θ, σ2)

∼ N
(
K> (K + σ2 I

)−1
y,K −K> (K + σ2 I

)−1
K
)

.

(2)

The mean of the posterior does not need to coincide with the training targets.
This would be the case however, if the estimated noise variance happened to be
zero, in which case the posterior at the training cases would be a delta function
centered on the targets.

Consider now that we observe a new input x∗ and would like to know the
distribution of f(x∗) (that we will write as f∗ for convenience) conditioned on
the observed data, and on a particular value of the hyperparameters and of the
output noise variance. The first thing to do is to write the augmented prior over
the function values at the training inputs and the new function value at the new
test input:

p

([
f
f∗

]∣∣∣∣x∗, X, θ

)
∼ N

(
0,

[
K k∗
k>∗ k∗∗

])
, (3)

where k∗ = [K(x∗,x1), . . . ,K(x∗,xn)]> and k∗∗ = K(x∗,x∗). Then we can
write the distribution of f∗ conditioned on the training function outputs:

p(f∗|f ,x∗, X, θ) ∼ N
(
k ∗> K−1f , k∗∗ − k ∗> K−1k∗

)
. (4)

The predictive distribution of f∗ is obtained by integrating out the training
function values f from (4) over the posterior distribution (2). The predictive
distribution is Gaussian:

p(f∗|y,x∗, X, θ, σ2) =
∫

p(f∗|f ,x∗, X, θ) p(f |y, X, θ, σ2) df

∼ N (m(x∗), v(x∗)) ,

(5)

4 Notice that learning cannot be achieved from the likelihood alone: defining a prior
over function values is essential to learning.

5 In Sect. A.2 some algebra useful for deriving (2) is given: notice that the likelihood
p(y|f , σ2) is also Gaussian in f with mean y.

with mean and variance given by:

m(x∗) = k>∗
(
K + σ2 I

)−1
y , v(x∗) = k∗∗ − k>∗

(
K + σ2 I

)−1
k∗ . (6)

Another way of obtaining the predictive distribution of f∗ is to augment the
evidence with a new element y∗ corresponding to the noisy version of f∗ and to
then write the conditional distribution of y∗ given the training targets y. The
variance of the predictive distribution of y∗ is equal to that of the predictive
distribution of f∗ (6) plus the noise variance σ2, while the means are identical
(the noise has zero mean).

Both if one chooses to learn the hyperparameters or to be Bayesian and
do integration, the marginal likelihood of the hyperparameters (or evidence of
the observed targets)6 must be computed. In the first case this quantity will
be maximized with respect to the hyperparameters, and in the second case it
will be part of the posterior distribution from which the hyperparameters will
be sampled. The evidence is obtained by averaging the likelihood over the prior
distribution on the function values:

p(y|X, θ, σ2) =
∫

p(y|f) p(f |X, θ) df ∼ N
(
0,K + σ2 I

)
. (7)

Notice that the evidence only differs from the prior over function values in a
“ridge” term added to the covariance, that corresponds to the additive Gaus-
sian i.i.d. output noise. Maximum likelihood II learning involves estimating the
hyperparameters θ and the noise variance σ2 by minimizing (usually for conve-
nience) the negative log evidence. Let Q ≡

(
K + σ2 I

)
. The cost function and

its derivatives are given by:

L =
1
2

log |Q|+ 1
2

y>Q−1y ,

∂L
∂θi

=
1
2

Tr
(

Q−1 ∂Q

∂θi

)
− y>Q−1 ∂Q

∂θi
Q−1y ,

∂L
∂σ2

=
1
2

Tr
(
Q−1

)
− y>Q−1Q−1y ,

(8)

and one can use some gradient descent algorithm to minimize L (conjugate
gradient gives good results, Rasmussen, 1996).

For Gaussian processes, the computational cost of learning is marked by
the need to invert matrix Q and therefore scales with the cube of the number of
training cases (O(n3)). If Q−1 is known (obtained from the learning process), the
computational cost of making predictions is O(n) for computing the predictive
mean, and O(n2) for the predictive variance for each test case. There is a need
for approximations that simplify the computational cost if Gaussian Processes
are to be used with large training datasets.

6 We will from now on use indistinctly “marginal likelihood” or “evidence” to refer to
this distribution.

3 Gaussian Processes as Linear Models

Gaussian Processes correspond to parametric models with an infinite number
of parameters. Williams (1997a) showed that infinite neural networks with cer-
tain transfer functions and the appropriate priors on the weights are equivalent
to Gaussian Processes with a particular “neural network” covariance function.
Conversely, any Gaussian Process is equivalent to a parametric model, that can
be infinite.

In Sect(s). 3.1 and 3.2 we establish the equivalence between GPs and linear
models. For the common case of GPs with covariance functions that cannot
be expressed as a finite expansion, the equivalent linear models are infinite.
However, it might still be interesting to approximate such GPs by a finite linear
model, which results in degenerate Gaussian Processes. In Sect. 3.3 we introduce
degenerate GPs and explain that they often correspond to inappropriate priors
over functions, implying counterintuitive predictive variances. We then show how
to modify these degenerate GPs at test time to obtain more appropriate priors
over functions.

3.1 From Linear Models to GPs

Consider the following extended linear model, where the model outputs are a lin-
ear combination of the response of a set of basis functions {φj(x)|j = 1, . . . ,m} ⊂
[RD → R]:

f(xi) =
m∑

j=1

φj(xi)αj = φ(xi) α , f = Φα , (9)

where as earlier f = [f(x1), . . . , f(xn)]> are the function outputs. The weights
are organized in a vector α = [α1, . . . , αM]>, and φj(xi) is the response of the
j-th basis function to input xi. φ(xi) = [φ1(xi), . . . , φm(xi)] is a row vector
that contains the response of all m basis functions to input xi and matrix Φ
(sometimes called design matrix) has as its i-th row vector φ(xi). Let us define
a Gaussian prior over the weights, of the form p(α|A) ∼ N (0, A). Since f is a
linear function of α it has a Gaussian distribution under the prior on α, with
mean zero. The prior distribution of f is:

p(f |A,Φ) ∼ N (0, C) , C = ΦA Φ> . (10)

The model we have defined corresponds to a Gaussian Process. Now, if the
number of basis functions m is smaller than the number of training points n,
then C will not have full rank and the probability distribution of f will be an
elliptical pancake confined to an m-dimensional subspace in the n-dimensional
space where f lives (Mackay, 1997).

Let again y be the vector of observed training targets, and assume that the
output noise is additive Gaussian i.i.d. of mean zero and variance σ2. The like-
lihood of the weights is then Gaussian (in y and in α) given by p(y|α, Φ, σ2) ∼

N (Φα, σ2 I). The prior over the training targets is then given by

p(y|A,Φ, σ2) ∼ (0, σ2 I + C) , (11)

and has a full rank covariance, even if C is rank deficient.
To make predictions, one option is to build the joint distribution of the train-

ing targets and the new test function value and then condition on the targets.
The other option is to compute the posterior distribution over the weights from
the likelihood and the prior. Williams (1997b) refers to the first option as the
“function-space view” and to the second as the “weight-space view”. This dis-
tinction has inspired us for writing the next two sections.

The Parameter Space View. Using Bayes rule, we find that the posterior is
the product of two Gaussians in α, and is therefore a Gaussian distribution:

p(α|y, A, Φ, σ2) =
p(y|α, Φ, σ2) p(α|A)

p(y|A,Φ, σ2)
∼ N (µ, Σ) ,

µ = σ−2 Σ Φ> y , Σ =
[
σ−2 Φ>Φ + A−1

]−1
.

(12)

The maximum a posteriori (MAP) estimate of the model weights is given by
µ. If we rewrite this quantity as µ = [Φ>Φ + σ2 A]−1Φ>y, we can see that the
Gaussian assumption on the prior over the weights and on the output noise
results in µ being given by a regularized version of the normal equations. For a
new test point x∗, the corresponding function value is f∗ = φ(x∗) α; for making
predictions the α’s are drawn from the posterior. Since f∗ is linear in α, it is
quite clear that the predictive distribution p(f∗|y, A, Φ, σ2) is Gaussian, with
mean and variance given by:

m(x∗) = φ(x∗)>µ , v(x∗) = φ(x∗)>Σ φ(x∗) . (13)

We can rewrite the posterior covariance using the matrix inversion lemma
(see App. A.1) as Σ = A − A[σ2 I + ΦA Φ>]−1 A. This expression allows us to
rewrite the predictive mean and variance as:

m(x∗) = φ(x∗)>A Φ>[σ2 I + ΦA Φ>]−1y ,

v(x∗) = φ(x∗)>A φ(x∗)− φ(x∗)>A Φ>[σ2 I + ΦA Φ>]−1ΦA φ(x∗) ,
(14)

which will be useful for relating the parameter space view to the GP view.

The Gaussian Process View. There exists a Gaussian Process that is equiv-
alent to our linear model with Gaussian priors on the weights given by (9). The
covariance function of the equivalent GP is given by:

k(xi,xj) = φ(xi)>A φ(xj) =
m∑

k=1

m∑
l=1

Akl φk(xi) φl(xj) . (15)

The covariance matrix of the prior over training function values is given by
K = ΦA Φ> and we recover the same prior as in (10). Taking the same noise
model as previously, the prior over targets is identical to (11).

Given a new test input x∗, the vector of covariances between f∗ and the
training function values is given by k∗ = ΦA φ(x∗) and the prior variance of f∗
is k∗∗ = φ(x∗) A φ(x∗). Plugging these expressions into the equations for the
predictive mean and variance of a GP (6) one recovers the expressions given by
(14) and (13). The predictive mean and variance of a GP with covariance function
given by (15) are therefore identical to the predictive mean and variance of the
linear model.

A fundamental property of the GP view of a linear model is that the set of
m basis functions appear exclusively as inner products. Linear models where m
is infinite are thus tractable under the GP view, provided that the basis func-
tions and the prior over the weights are appropriately chosen. By appropriately
chosen we mean such that a generalized dot product exists in feature space, that
allows for the use of the “kernel trick”. Schölkopf and Smola (2002) provide with
extensive background on kernels and the “kernel trick”.

Let us reproduce here an example given by Mackay (1997). Consider a one-
dimensional input space, and let us use squared exponential basis functions
φc(xi) = exp(−(xi − c)/(2λ2)), where c is a given center in input space and
λ is a known lengthscale. Let us also define an isotropic prior over the weights,
of the form A = σ2

α I. We want to make m go to infinity, and assume for simplic-
ity uniformly spaced basis functions. To make sure that the integral converges,
we set variance of the prior over the weights to σ2

α = s/∆m, where ∆m is the
density of basis functions in the input space. The covariance function is given
by:

k(xi, xj) = s

∫ cmax

cmin

φc(xi) φc(xj) dc ,

= s

∫ cmax

cmin

exp
[
− (xi − c)2

2λ2

]
exp

[
− (xj − c)2

2λ2

]
dc .

(16)

Letting the limits of the integral go to infinity, we obtain the integral of the
product of two Gaussians (but for a normalization factor), and we can use the
algebra from Sect. A.2 to obtain:

k(xi, xj) = s
√

πλ2 exp
[
− (xi − xj)2

4λ2

]
, (17)

which is the squared exponential covariance function that we presented in (1).
We now see that a GP with this particular covariance function is equivalent to
a linear model with infinitely many squared exponential basis functions.

In the following we will show that for any valid covariance function, a GP
has an equivalent linear model. The equivalent linear model will have infinitely
many weights if the GP has a covariance function that has no finite expansion.

3.2 From GPs to Linear Models

We have just seen how to go from any linear model, finite or infinite, to an
equivalent GP. We will now see how to go the opposite way, from an arbitrary
GP to an equivalent linear model, which will in general be infinite and will be
finite only for particular choices of the covariance function.

We start by building a linear model where all the function values consid-
ered (training and test inputs) are equal to a linear combination of the rows of
the corresponding covariance matrix of the GP we wish to approximate, com-
puted with the corresponding covariance function K(xi,xj). As in Sect. 2, the
covariance function is parametrized by the hyperparameters θ. A Gaussian prior
distribution is defined on the model weights, with zero mean and covariance
equal to the inverse of the covariance matrix:[

f
f∗

]
=
[
K k∗
k>∗ k∗∗

]
·
[
α
α∗

]
, p

([
α
α∗

]∣∣∣∣x∗, X, θ

)
∼ N

(
0,

[
K k∗
k>∗ k∗∗

]−1
)

. (18)

To compute the corresponding prior over function values we need to integrate
out the weights [α, α∗]> from the left expression in (18) by averaging over the
prior (right expression in (18)):

p

([
f
f∗

]∣∣∣∣x∗, X, θ

)
=
∫

δ

([
f
f∗

]
−
[
K k∗
k>∗ k∗∗

]
·
[
α
α∗

])
p

([
α
α∗

]∣∣∣∣x∗, X, θ

)
dα

∼ N
(

0,

[
K k∗
k>∗ k∗∗

])
,

(19)
and we recover exactly the same prior over function values as for the Gaussian
Process, see (3).

Notice that for the linear model to correspond to the full GP two requirements
need to be fulfilled:

1. There must be a weight associated to each training input.
2. There must be a weight associated to each possible test input.

Since there are as many weights as input instances, we consider that there is an
infinite number of weights of which we only use as many as needed and qualify
such a linear model of infinite.

Of course, for covariance functions that have a finite expansion in terms of
m basis functions, the rank of the covariance matrix will never be greater than
m and the equivalent linear model can be readily seen to be finite, with m basis
functions. A trivial example is the case where the covariance function is built
from a finite linear model with Gaussian priors on the weights. The linear model
equivalent to a GP is only infinite if the covariance function of the GP has no
finite expansion. In that case, independently of the number of training and test
cases considered, the covariance matrix of the prior (independently of its size)
will always have full rank.7

7 The covariance matrix can always be made rank deficient by replicating a function
value in the joint prior, but we do not see any reason to do this in practice.

It becomes evident how one should deal with GPs that have an equivalent
finite linear model. If there are more training cases than basis functions, n > m,
then the finite linear model should be used. In the case where there are less
training cases than basis functions, m > n, it is computationally more interesting
to use the GP.

One strong motivation for the use of Gaussian Processes is the freedom to
directly specify the covariance function. In practice, common choices of GP priors
imply covariance functions that do not have a finite expansion. For large datasets,
this motivates the equivalent infinite linear model by a finite or sparse one. The
approximated GP is called Reduced Rank GP since its covariance matrix has a
maximum rank equal to the number of weights in the finite linear model.

We will see later in Sect. 4 that the finite linear approximation is built by
relaxing the requirement of a weight being associated to each training input,
resulting in training inputs with no associated weight. This relaxation should
only be done at training time. In the next Section we show the importance of
maintaining the requirement of having a weight associated to each test input.

3.3 “Can I Skip α∗?” or Degenerate Gaussian Processes

One may think that having just “as many weights as training cases” with no
additional weight α∗ associated to each test case gives the same prior as a full
GP. It does only for the function evaluated at the training inputs, but it does
not anymore for any additional function value considered. Indeed, if we posed
f = K α with a prior over the weights given by p(α|X, θ) ∼ N (0,K−1), we
would obtain that the corresponding prior over the training function values is
p(f |X, θ, σ2) ∼ N (0,K). It is true that the linear model would be equivalent to
the GP, but only when the function values considered are in f . Without addition
of α∗, the linear model and prior over function values are respectively given by:[

f
f∗

]
=
[
K
k>∗

]
·α , p

([
f
f∗

]∣∣∣∣x∗, X, θ

)
∼ N

(
0,

[
K k∗
k>∗ k>∗ K−1k∗

])
. (20)

The prior over the new function values f∗ differs now from that of the full
GP. Notice that the prior variance of f∗ depends on the training inputs: for the
common choice of an RBF-type covariance function, if x∗ is far from the training
inputs, then there is a priori no signal, that is f∗ is zero without uncertainty!
Furthermore, the distribution of f∗ conditioned on the training function outputs,
which for the full GP is given by (4), has now become:

p(f∗|f ,x∗, X, θ) ∼ N
(
k>∗ K−1f , 0

)
. (21)

Given f , any additional function value f∗ is not a random variable anymore,
since its conditional distribution has zero variance: f∗ is fully determined by f .

If α has a fixed finite size, the prior over functions implied by the linear
model ceases to correspond to the GP prior. The joint prior over sets of function
values is still Gaussian, which raises the question “is this still a GP?”. We choose
to call such a degenerate process a “degenerate Gaussian Process”.

−5 0 5
0

0.2

0.4

0.6

0.8

1

Fig. 1. Predictive standard deviation for a full GP (solid line) and for a degenerate
GP (slash-dotted line). The hyperparameters θi are all set to 1. The crosses indicate
the horizontal location of the 5 training inputs.

Degenerate GPs produce a predictive distribution that has maximal variabil-
ity around the training inputs, while the predictive variance fades to the noise
level as one moves away from them. We illustrate this effect on Fig. 1. We plot
the predictive standard deviation of a full GP and its degenerate counterpart for
various test points. The training set consists of 5 points: both models have thus
5 weights associated to the training set. The full GP has an additional weight,
associated to each test point one at a time. Though it might be a reasonable
prior in particular contexts, we believe that it is in general inappropriate to have
smaller predictive variance far away from the observed data. We believe that ap-
propriate priors are those under which the predictive variance is reduced when
the test inputs approach training inputs. In the remaining of the paper we will
consider that appropriate priors are desirable, and qualify the prior correspond-
ing to a degenerate GP of inappropriate.

4 Finite Linear Approximations

As we have discussed in Sect. 3.1, a weight must be associated to each test case
to avoid inappropriate priors that produce inappropriate predictive errorbars.
However, the requirement of each training case having a weight associated to
it can be relaxed. For computational reasons it might be interesting to approx-
imate, at training time, a GP by a finite linear model with less weights than
training cases. The model and the prior on the weights are respectively given
by:

f = Knm αm , p(αm|X, θ) ∼ N (0,K−1
mm) , (22)

The subscripts m and n are used to indicate the dimensions: αm is of size n× 1
and Kmn of size m × n; in the following we will omit these subscripts where
unnecessary or cumbersome. Sparseness arises when m < n: the induced prior
over training function values is p(f |X, θ) ∼ N

(
0,Knm K−1

mm K>
nm

)
, and rank of

the covariance matrix is at most m. We call such an approximation a Reduced
Rank Gaussian Process (RRGP).

The m inputs associated to the weights in αm do not need to correspond to
training inputs. They can indeed be any set of arbitrary points in input space.
We will call such points support inputs (in recognition to the large amount of
work on sparse models done by the Support Vector Machines community). In
this paper we will adopt the common restriction of selecting the support set from
the training inputs. We discuss ways of selecting the support points in Sect. 4.4.

Learning an RRGP consists both in learning the hyperparameters of the co-
variance function and in selecting the support set. In practice however, it is hard
to do both simultaneously. Besides the technical difficulties of the optimization
process (observed for example by Csató (2002)), there is the fundamental issue of
having an excessive amount of flexibility that may lead to overfitting (observed
for example by Rasmussen (2002) and Seeger et al. (2003)). Smola and Bartlett
(2001) address the issue of selecting the support set (Sect. 4.5), assuming that
the covariance hyperparameters are given. However, we show that they do this
in a way that does not guarantee generalization and we propose an alternative
theoretically more sound approach in Sect. 4.4. In the next Section we show how
to learn the hyperparameters of the covariance function for the RRGP for a fixed
support set. We also show how to make predictions under a degenerate GP, that
is, without an additional weight for the new test case, and with the inclusion of
a new weight that ensures appropriate predictive variances.

4.1 Learning a Reduced Rank Gaussian Process

The likelihood of the weights is Gaussian in y and is a linear combination of
αm, given by p(y|X, θ,αm, σ2) ∼ N (Knm αm, σ2 I), where σ2 is again the white
noise variance. The marginal likelihood of the hyperparameters of the full GP is
given by (7). For the sparse finite linear approximation, the marginal likelihood
is obtained by averaging the weights out of the likelihood over their prior:

p(y|X, θ, σ2) =
∫

p(y|X, θ,αm, σ2) p(αm|X, θ) dαm

∼ N
(
0, σ2 I + Knm K−1

mmK>
nm

)
.

(23)

As expected, for the case where the support set comprises all training inputs
and m = n, we recover the full Gaussian Process.

Let us define Q̃ ≡
[
σ2 I + Knm K−1

mmK>
nm

]
, the covariance of the RRGP

evidence. Maximum likelihood learning of the hyperparameters can be achieved
by minimizing the negative log evidence. The cost function and its derivatives are
given by (8) where Q is replaced by Q̃. Since the simple linear algebra involved

can be tedious, we give here the explicit expression of the different terms. For
the terms involving log |Q̃| we have:

log |Q̃| = (n−m) log(σ2) + log
∣∣K>

nm Knm + σ2 Kmm

∣∣ ,

∂ log |Q̃|
∂θi

= Tr

[
Q̃−1 ∂Q̃

∂θi

]
= 2 Tr

[
∂Knm

∂θi
Z>
]
− Tr

[
K−1

mm K>
nm Z

∂Knm

∂θi

]
,

∂ log |Q̃|
∂σ2

=
n−m

σ2
+ Tr [Zmm] ,

(24)
where we have introduced Z ≡ Knm

[
K>

nm Knm + σ2 Kmm

]−1. For the terms
involving Q̃−1 we have:

y>Q̃−1y =
(
y>y − y> Z K>

nmy
)
/σ2 ,

∂y>Q̃−1y
∂θi

= y>Z
∂Kmm

∂θi
Z>y − 2y>

(
I − Z K>

nm

) ∂Knm

∂θi
Z> y/σ2 ,

∂y>Q̃−1y
∂σ2

= −y>y/σ4 + y> Z K>
nmy/σ4 + y>Z Kmm Z>y/σ2 .

(25)

The hyperparameters and the output noise variance can be learnt by using the
expressions we have given for the negative log marginal likelihood and its deriva-
tives in conjunction with some gradient descent algorithm. The computational
complexity of evaluating the evidence and its derivatives is O(nm2 + nDm),
which is to be compared with the corresponding cost of O(n3) for the full GP
model.

4.2 Making Predictions without α∗

The posterior over the weights associated to the training function values is
p(αm|y,Kmn, σ2) ∼ N (µ,Σ) with:

µ = σ−2Σ K>
mny , Σ =

[
σ−2K>

mnKmn + Kmm

]−1
. (26)

At this point one can choose to make predictions right now, based on the pos-
terior of αm and without adding an additional weight α∗ associated to the new
test point x∗. As discussed in Sect. 3.3, this would correspond to a degenerate
GP, leading to inappropriate predictive variance. The predictive mean on the
other hand can still be a reasonable approximation to that of the GP: Smola
and Bartlett (2001) approximate the predictive mean exactly in this way. The
expressions for the predictive mean and variance, when not including α∗, are
respectively given by:

m(x∗) = k(x∗)>µ, v(x∗) = σ2 + k(x∗)>Σ k(x∗). (27)

k(x∗) denotes the m× 1 vector [K(x∗,x1), . . . ,K(x∗,xm)]> of covariances be-
tween x∗ and at the m support inputs (as opposed to k∗ which is the n × 1

vector of covariances between x∗ and at the n training inputs). Note that if no
sparseness is enforced, (m = n), then µ = (Knn + σ2 I)−1y and the predictive
mean m(x∗) becomes identical to that of the full GP. Also, note that for decay-
ing covariance functions,8 if x∗ is far away from the selected training inputs, the
predictive variance collapses to the output noise level, which we have defined as
an inappropriate prior.

The computational cost of predicting without α∗ is an initial O(nm2) to
compute Σ, and then an additional O(m) for the predictive mean and O(m2)
for the predictive variance per test case.

4.3 Making Predictions with α∗

To obtain a better approximation to the full GP, especially in terms of the
predictive variance, we add an extra weight α∗ to the model for each test input
x∗. Unless we are interested in the predictive covariance for a set of test inputs,
it is enough to add one single α∗ at a time. The total number of weights is
therefore only augmented by one for any test case.

For a new test point, the mean and covariance matrix of the new posterior
over the augmented weights vector are given by:

µ∗ = σ−2Σ∗

[
K>

mn

k>∗

]
y ,

Σ∗ =
[

Σ−1 k(x∗) + σ−2 K>
nmk∗

k(x∗)> + σ−2 k>∗ Knm k∗∗ + σ−2 k>∗ k∗

]−1

.

(28)

and the computational cost of updating the posterior and computing the pre-
dictive mean and variance is O(nm) for each test point. The most expensive
operation is computing K>

nmk∗ with O(nm) operations. Once this is done and
given that we have previously computed Σ, computing Σ∗ can be efficiently
done using inversion by partitioning in O(m2) (see Sect. A.1 for the details).
The predictive mean and variance can be computed by plugging the updated
posterior parameters (28) into (27), or alternatively by building the updated
joint prior over the training and new test function values. We describe in detail
the algebra involved in the second option in App. A.5. The predictive mean and
variance when including α∗ are respectively given by:

m∗(x∗) = k>∗
[
Knm K−1

mm K>
nm + σ2 I + v∗v>∗ /c∗

]−1
y ,

v∗(x∗) = σ2 + k∗∗ + k>∗
[
Knm K−1

mm K>
nm + σ2 I + v∗v>∗ /c∗

]−1
k∗ .

(29)

where v∗ ≡ k∗ −Knm K−1
mm k(x∗) is the difference between the actual and the

approximated covariance of f∗ and f , and c∗ ≡ k∗∗ − k(x∗)>K−1
mm k(x∗) is the

predictive variance at x∗ of a full GP with the support inputs as training inputs.
8 Covariance functions whose value decays with the distance between the two argu-

ments. One example is the squared exponential covariance function described in
Sect. 2. Decaying covariance functions are very commonly encountered in practice.

4.4 Selecting the Support Points

One way of addressing the problem of selecting the m support inputs is to select
them from among the n training inputs. The number of possible sets of support
inputs is combinatorial, Cm

n .9 Since we will typically be interested in support
sets much smaller than the training sets (m < n), this implies that the number
of possible support sets is roughly exponential in m. Ideally one would like to
evaluate the evidence for the finite linear model approximation (23), for each
possible support input set, and then select the set that yields a higher evidence.
In most cases however, this is impractical due to computational limitations. One
suboptimal solution is to opt for a greedy method: starting with an empty subset,
one includes the input that results in a maximal increase in evidence. The greedy
method exploits the fact that the evidence can be computed efficiently when a
case is added (or deleted) to the support set.

Suppose that a candidate input xi from the training set is considered for
inclusion in the support set. The new marginal likelihood is given by:

Li =
1
2

log |Q̃i|+
1
2

y>Q̃−1
i y , Q̃i ≡ σ2 I + Knm̃ K−1

m̃m̃ K>
nm̃ , (30)

where m̃ is the set of m + 1 elements containing the m elements in the current
support set plus the new case xi. Q̃i is the updated covariance of the evidence
of the RRGP augmented with xi. Let us deal separately with the two terms in
the evidence. The matrix inversion lemma allows us to rewrite Q̃i as:

Q̃i = σ−2 I − σ−4 Knm̃ Σi K>
nm̃ , Σi =

[
K>

nm̃Knm̃/σ2 + Km̃m̃

]−1
, (31)

where Σi is the covariance of the posterior over the weights augmented in αi,
the weight associated to xi. Notice that Σi is the same expression as Σ∗ in (28)
if one replaces the index ∗ by i. In both cases we augment the posterior in the
same way. Computing Σi from Σ costs therefore only O(nm).

The term of L quadratic in y can be rewritten as:

Qi =
1

2σ2
y>y − 1

2σ4
y>Knm̃ Σi K>

nm̃ y , (32)

and can be computed efficiently in O(nm) if Σ and K>
nm y are known. In

Sect. A.3 we provide the expressions necessary for computing Qi incrementally
in a robust manner from the Cholesky decomposition of Σ. In Sect. 4.5 we
describe Smola and Bartlett’s Sparse Greedy Gaussian Process (SGGP) Regres-
sion which uses Qi solely as objective function for selecting the support set in a
greedy manner.

The term of L that depends on log |Q̃i| can be expressed as:

Gi =
1
2
[
log |Σi| − log |Km̃m̃|+ n log σ2

]
, (33)

9 Cm
n is “n choose m”: the number of combinations of m elements out of n without

replacement and where the order does not matter.

and computed at a cost ofO(nm) (the cost of computing K>
nm ki). The algebra in

Sect. A.3 can be used to update the determinants from the incremental Cholesky
decompositions at no additional cost.

The overall cost of evaluating the evidence for each candidate point for the
support set is O(nm). In practice, we may not want to explore the whole training
set in search for the best candidate, since this would be too costly. We may
restrict ourselves to exploring some reduced random subset.

4.5 Sparse Greedy Gaussian Process Regression

Smola and Bartlett (2001) and Schölkopf and Smola (2002) present a method
to speed up the prediction stage for Gaussian processes. They propose a sparse
greedy techniques to approximate the Maximum a Posteriori (MAP) predictions,
treating separately the approximation of the predictive mean and that of the
predictive variance.

For the predictive mean, Smola and Bartlett adopt a finite linear approxima-
tion of the form given by (22), where no extra weight α∗ associated to the test
input is added. Since this is a degenerate GP, it is understandable that they only
use it for approximating the predictive mean: we now know that the predictive
uncertainties of degenerate GPs are inappropriate.

The main contribution of their paper is to propose a method for selecting
the m inputs in the support set from the n training inputs. Starting from a full
posterior distribution (as many weights as training inputs), they aim at finding
a sparse weight vector (with only m non-zero entries) with the requirement that
the posterior probability at the approximate solution be close to the maximum of
the posterior probability (quoted from (Schölkopf and Smola, 2002, Sect. 16.4.3)).
Since the optimal strategy has again a prohibitive cost, they propose a greedy
method where the objective function is the full posterior evaluated at the optimal
weights vector with only m non-zeros weighs, those corresponding to the inputs
in the support set.

The posterior on αn (full posterior) is given by (26), where m = n, i.e. matrix
Knm is replaced by the full n×n matrix K. The objective function used in (Smola
and Bartlett, 2001; Schölkopf and Smola, 2002) is the part of the negative log
posterior that depends on αn, which is the following quadratic form:

−1
2
y>Knm αm +

1
2

α>m
[
K>

nm Knm + σ2 Kmm

]
αm , (34)

where as usual αm denotes the part of αn that hasn’t been clamped to zero.
Notice that it is essential for the objective function to be the full posterior
evaluated at a sparse αn, rather than the posterior on αm (given by (26) with
indeed m 6= n). In the latter case, only the log determinant of the covariance
would play a rôle in the posterior, since αm would have been made equal to
the posterior mean, and we would have a completely different objective function
from that in (Smola and Bartlett, 2001; Schölkopf and Smola, 2002).

Given two candidates to the support set, the one resulting in a support set
for which the minimum of (34) is smaller is chosen. The minimum of (34) is

given by:

−1
2
y>Knm

[
K>

nm Knm + σ2 Kmm

]
K>

nm y , (35)

and it is in fact this quantity that is minimized with respect to the m elements in
the support set in a greedy manner. The expression given in (35) with m 6= n is
in fact an upper bound to the same expression with m = n, which corresponds
to selecting the whole training set as active set. Smola and Bartlett (2001);
Schölkopf and Smola (2002) also provide a lower bound to the latter, which
allows them to give a stop criterion to the greedy method based on the relative
difference between upper and lower bound. The computational cost of evaluating
the expression given in (35) for each candidate to the support set is O(nm), and
use can be made of an incremental Cholesky factorization for numerical stability.
The expressions in Sect. A.3 can be used. The computational cost is therefore
the same for the SGGP method as for the greedy approach based on maximizing
the evidence that we propose in Sect. 4.4.

Why Does it Work? One might at this point make abstraction from the
algorithmic details, and ask oneself the fair question of why obtaining a sparse
weight vector that evaluated under the posterior over the full weight vector yields
a probability close to that of the non-sparse solution is a good approximation.
Along the same lines, one may wonder whether the stopping criterion proposed
relates in any way with good generalization.

It turns out that the method often works well in practice, in a very similar
way as our proposed greedy criterion based on maximizing the evidence. One
explanation for the SGGP method to select meaningful active sets is that it is
in fact minimizing a part of the negative log evidence Li, given by (30). Indeed,
notice that minimizing the objective function given by (35) is exactly equivalent
to minimizing the part of the negative log evidence quadratic in y given by (32).
So why would the method work if it only maximizes Qi (32), the part of Li

that has to do with fitting the data, and ignores Gi (33), the part that enforces
regularization? We believe that overfitting will seldom happen because m is
typically significantly smaller than n, and that therefore we are selecting from a
family of models that are all very simple. In other words, it is the sparsity itself
that guarantees some amount of regularization, and therefore Gi can be often
safely omitted from the negative log evidence. However, as we will see in what
follows, the SGGP can fail and indeed overfit. The problem is that the SGGP
fails to provide a valid stopping criterion for the process of adding elements to
the support set.

But, How Much Sparsity? If sparsity seemingly ensures generalization, then
it would also seem that a criterion is needed to know the minimum sparsity level
required. In other words, we need to know how many inputs it is safe to include
in the support set. (Smola and Bartlett, 2001; Schölkopf and Smola, 2002) use
a measure they call the “gap”, which is the relative difference between the up-
per and lower bound on the negative log posterior. They choose an arbitrary

threshold below which they consider that the approximate posterior has been
maximized to a value close enough to the maximum of the full posterior. Once
again we fail to see what such a criterion has to do with ensuring generaliza-
tion, and we are not the only ones: Schwaighofer and Tresp (2003) report “we
did not observe any correlation between the gap and the generalization perfor-
mance in our experiments”. It might be that for well chosen hyperparameters
of the covariance, or for datasets that do not lend themselves to sparse approxi-
mations, keeping on adding cases to the support set cannot be harmful. Yet the
SGGP does not allow learning the hyperparameters, and those must be somehow
guessed (at least not in a direct way).

We provide a simple toy example (Fig. 2) in which the value of minimizing
the negative log evidence becomes apparent. We generate 100 one-dimensional
training inputs, equally spaced from −10 to 10. We generate the corresponding
training inputs by applying the function sin(x)/x to the inputs, and adding
Gaussian noise of variance 0.01. We generate the test data from 1000 test inputs
equally spaced between −12 and 12. We use a squared exponential covariance
function as given by (1), and we set the hyperparameters in the following way:
the lengthscale is θ1 = 1, the prior standard deviation of the output signal is
θ2 = 1 and the noise variance is σ2 = θ3 = 0.01. Note that we provide the
model with the actual variance of the noise. We apply the greedy strategy for
selecting the support set by minimizing in one case the negative log evidence
and in the other case the negative log posterior. Interesting things happen. We
plot the test squared error as a function of m, the size of the support set for
both greedy strategies. Both have a minimum for support sets of size around 8
to 10 elements, and increase again as for larger support sets. Additionally, we
compute the negative log evidence as a function of m, and we see that it has a
minimum around the region where the test error is minimal. This means that we
can actually use the evidence to determine good levels of sparsity. We also plot
the “gap” as a function of m, and indicate the location of the arbitrary threshold
of 0.025 used by Smola and Bartlett (2001); Schölkopf and Smola (2002). The
gap cannot provide us with useful information in any case, since it is always a
monotonically decreasing function of m! The threshold is absolutely arbitrary,
and has no relation to the expected generalization of the model.

Approximating Predictive Variances. Obtaining the predictive variance
based on the posterior of the weights associated to the support set is a bad idea,
since those will be smaller the further away the test input is from the inputs
in the support set. An explicit approximation to the predictive variance of a
full GP, given in (6) is proposed instead. For a given test input x∗, Smola and
Bartlett (2001); Schölkopf and Smola (2002) propose to approximate the term:

−k>∗
[
K + σ2 I

]−1
k∗ , (36)

using the fact that it is the minimum (with respect to the n× 1 weights vector
β, one weight associated to each training input) of the quadratic form:

−2k>∗ β + β>
[
K + σ2 I

]
β . (37)

10
0

10
1

10
2

0

0.04

0.08

0.12

test squared error:

10
0

10
1

10
2

−160

−120

−80

min neg log ev.
min neg log post.

neg log evidence

10
0

10
1

10
2

−50

0

50

upper bound on neg log post.

lower bound on neg log post.

gap = 0.025

Fig. 2. Comparison between a sparse greedy approximation based on minimizing the
negative log evidence, and one based on minimizing the negative log posterior. In both
figures the horizontal axis indicates the size of the support set. Top: the solid black
curve is the negative log evidence, with values given by the right vertical axis, the other
two curves are the test squared error of the greedy methods based on minimizing the
negative log evidence (solid gray) and the negative log posterior (dashed black), with
values given on the left vertical axis. Bottom: for the SGGP approach the upper and
lower bounds on the negative lower posterior are given, and the vertical dotted line
shows the minimum size of the support set for which the “gap” is smaller that 0.025.

They then go on to propose finding a sparse version βm of β with only m non-
zero elements.10 The method is again a greedy incremental minimization of the
expression in (37). For a given choice of active elements (non-zero) in β, the
minimum of the objective function is given by:

−k(x∗)>
[
Kmm + σ2 I

]−1
k(x∗) , (38)

where here again k(x∗) represents an m × 1 vector containing the covariance
function evaluated at x∗ and at the m inputs in the support set. Again, the

10 This m does not have anything to do with the number of inputs in the support
set of our previous discussion. It corresponds to a new support set, this time for
approximating the predictive variance at x∗. We insist on using the same symbol
though because it still corresponds to a support set with m < n.

support set yielding a minimal value of the expression in (38) will be chosen.
The expression in (38) is also an upper bound on the (36), which means that bad
approximations only mean an overestimate of the predictive variance, which is
less bad than an underestimate. For each candidate to the support set, (38) can
be evaluated in O(m2) (this cost includes updating

[
Kmm + σ2 I

]−1). Luckily,
in practice the typical size of the support sets for approximating predictive vari-
ances is around one order of magnitude smaller than the size of the support set
for approximating predictive means. Smola and Bartlett (2001); Schölkopf and
Smola (2002) also provide a lower bound to (36), which allows to use a similar
stop criterion as in the approximation of the predictive means.

Limitations Though it does work in practice and for the datasets on which we
have tried it, there is no fundamental guarantee that SGGP will always work,
since it does not maximize the whole of the evidence: it ignores the term in
log |Q̃|.

The hyperparameters of the covariance function need to be known: they can-
not be learned by maximizing the posterior, since this would lead to overfitting.

While for approximating the predictive means one needs to find a unique
support set, a specific support set needs to be estimated for each different test
input if one wants to obtain good approximations to the predictive variance.
The computational cost becomes then O(knm2) per training case, where k is
the size of a reduced random search set (Smola and Bartlett (2001) suggest
using k = 59).

5 Experiments

We use the KIN40K dataset (for more details see Rasmussen, 1996, Chap. 5).
This dataset represents the forward dynamics of an 8 link all-revolve robot arm.
The dataset contains 40000 examples, the input space is 8-dimensional, and the
1-dimensional output represents the distance of an end-point of the robot arm
from a fixed point. The mapping to be learned is low noise and highly nonlinear.
This is of importance, since it means that the predictions can be improved by
training on more data, and sparse solutions do not arise trivially.

We divide the dataset into 10 disjoint subsets of 4000 elements, that we then
further split into training and test sets of 2000 elements each. The size of the
support set is set to 512 elements in all cases. For each method we perform
then 10 experiments, and compute the following losses: the Mean Absolute Er-
ror (MAE), the Mean Squared Error (MSE) and the Negative Test Log-density
(NTL). We also compute the training negative log likelihood per training case.
Averaged results over the 10 disjoint sub-datasets are shown in the upper part
of Table 1. SGGP is the sparse support set selection method proposed by Smola
and Bartlett (2001); to compute predictive uncertainties, we do not use the
sparse greedy approximation they suggest, since it has a too high computational
cost of O(knm2) per test case, with k = 59 and m ≈ 250 in our case to reach

non-augmented augmented
method tr. neg log lik MAE MSE NTL MAE MSE NTL

SGGP – 0.0481 0.0048 −0.3525 0.0460 0.0045 −0.4613
SGEV −1.1555 0.0484 0.0049 −0.3446 0.0463 0.0045 −0.4562
HPEV-rand −1.0978 0.0503 0.0047 −0.3694 0.0486 0.0045 −0.4269
HPEV-SGEV −1.3234 0.0425 0.0036 −0.4218 0.0404 0.0033 −0.5918
HPEV-SGGP −1.3274 0.0425 0.0036 −0.4217 0.0405 0.0033 −0.5920

2000 training - 2000 test

SGEV −1.4932 0.0371 0.0028 −0.6223 0.0346 0.0024 −0.6672
HPEV-rand −1.5378 0.0363 0.0026 −0.6417 0.0340 0.0023 −0.7004

36000 training - 4000 test

Table 1. Comparison of different learning methods for RRGPs on the KIN40K dataset,
for 2000 training and test cases (upper subtable) and for 36000 training and 4000 test
cases (lower subtable). The support set size is set to 512 for all methods. For each
method the training negative log marginal likelihood per case is given, together with
the Mean Absolute Error (MAE), Mean Squared Error (MSE) and Negative Test Log-
likelihood (NTL) losses. SGGP (Smola and Bartlett, 2001) and SGEV (our alternative
to SGGP based on maximizing the evidence) are based on learning the support set
for fixed hyperparameters. HPEV-random learns the hyperparameters for a random
subset, and HPEV-SGEV and HPEV-SGGP are methods where SGEV and SGGP are
respectively interleaved with HPEV, for 10 repetitions.

gap < 0.025. As an alternative, they suggest to use the predictive uncertainties
given by a reduced GP trained only on the support set obtained for approxi-
mating the predictive mean; the computational cost is low, O(m2) per test case,
but the performance is too poor to be worth reporting (NTL of the order of
0.3). To compute predictive uncertainties with the SGGP method we use the
expressions given by (27) and (29). SGEV is our alternative greedy support set
selection method based on maximizing the evidence. The HPEV-rand method
selects a support set at random and learns the covariance hyperparameters by
maximizing the evidence of the approximate model, as described in Sect. 4.1.
The HPEV-SGEV and HPEV-SGGP methods select the support set for fixed
hyperparameters according to the SGEV and and SGGP methods respectively,
and then for that selected support set learn the hyperparameters by using HPEV.
This procedure is iterated 10 times for both algorithms, which is enough for the
likelihood to apparently converge. For all algorithms we present the results for
the näıve non-augmented degenerate prediction model, and for the augmented
non-degenerate one.

The experimental results show that the performance is systematically supe-
rior when using the augmented non-degenerate RRGP with an additional weight
α∗. This superiority is expressed in all three losses, mean absolute, mean squared
and negative test predictive density (which takes into account the predictive un-
certainties). We believe that the relevant loss is the last one, since it reflects
the fundamental theoretical improvement of the non-degenerate RRGP. The

fact that the losses related to the predictive mean are also better can be ex-
plained by the model being slightly more flexible. We performed paired t-tests
that confirmed that under all losses and algorithms considered, the augmented
RRGP is significantly superior than the non-augmented one, with p-values al-
ways smaller than 1%. We found that for the dataset considered SGGP, SGEV
and HPEV-rand are not significantly different. It would then seem that learn-
ing the hyperparameters for a random support set, or learning the support set
for (carefully selected) hyperparameters by maximizing the posterior or the ev-
idence are methods with equivalent performance. We found that both for the
augmented and the non-augmented case, HPEV-SGEV and HPEV-SGGP are
significantly superior to the other three methods, under all losses, again with
p-values below 1%. On the other hand, HPEV-SGEV and HPEV-SGGP are not
significantly different from each other under any of the losses.

The lower part of Table 1 shows the results of an additional experiment
we made, where we compare SGEV to HPEV-rand on a larger training set.
We generate this time 10 disjoint test sets of 4000 cases, and 10 corresponding
training sets of 36000 elements. The size of the support sets remains 512. We
compute the same losses as earlier, and consider also the augmented and the
non-augmented RRGPs for making predictions. Paired t-tests11 confirm once
again the superiority of the augmented model to the non-augmented one for
both models and all losses, with p-values below 1%.

6 Discussion

We have proposed to augment RRGPs at test time, by adding an additional
weight α∗ associated to the new test input x∗. The computational cost for the
predictive mean increases to O(nm) per case, i.e. O(n) more expensive than the
non-augmented case. It might seem surprising that this is more expensive than
the O(n) cost per case of the full GP! Of course, the full GP has has an initial
cost of O(n2) provided that the covariance matrix has been inverted, which costs
O(n3). Computing predictive variances has an initial cost of O(nm2) like for the
non-augmented case, and then a cost per case of O(nm) which is more expensive
than the O(m2) for the non-augmented case, and below the O(n2) of the full
GP. It may be argued that the major improvement brought by augmenting
the RRGP is in terms of the predictive variance, and that one might therefore
consider computing the predictive mean from the non-augmented model, and
the predictive variance from the augmented. However, the experiments we have
conducted show that the augmented RRGP is systematically superior to the non-
augmented, for all losses and learning schemes considered. The mean predictions
are also better, probably due to the gain in flexibility by having an additional
basis function.

Which method should be used for computing predictive variances? We have
shown that using the degenerate RRGP, (27), has a computational cost of O(m2)
11 Due to dependencies between the training sets, assumptions of independence needed

for the t-test could be compromised, but this is probably not a major effect.

per test case. Using the augmented non-degenerate RRGP is preferable though
because it gives higher quality predictive uncertainties, but the cost augments
to O(nm) per test case. Smola and Bartlett (2001) propose two possibilities. A
cost efficient option, O(m2) per test case, is to base the calculation of all test
predictive variances on the support set selected by approximating the posterior,
which is in fact equivalent to computing predictive variances from a small full GP
trained only on the support set. They show that the predictive variances obtained
will always be an upper bound on the ones given by the full GP, and argue that
inaccuracy (over estimation) is for that reason benign. We found experimentally
that the errorbars from a small full GP trained only on the support set are
very poor. The more accurate, yet more costly option consists is selecting a
new support set for each test point. While they argue that the typical size of
such test sets is very small (of the order of 25 for reasonable hyperparameters
for the abalone dataset, but of the order of 250 for the KIN40K dataset), the
computational cost per test case rises to O(knm2). As we have explained, k
is the size of a reduced random search set that can be fixed to 59 (see Smola
and Bartlett, 2001). For their method to be computationally cheaper than our
augmented RRGP, the support set that our method selects should contain more
than 59 × 252 = 36875 elements. This is two orders of magnitude above the
reasonable size of support sets that we would choose. In the experiments, we
ended up computing the predictive variances for the SGGP from our expressions
(27) and (29).

We found that none of the two possible “one-shot” approaches to training a
RRGP is significantly superior to the other. In other words, selecting support
sets at random and optimizing the hyperparameters does not provide signifi-
cantly different performance than fixing the hyperparameters and selecting the
support set in a supervised manner. Furthermore, on the dataset we did our
experiments SGGP and SGEV did not prove to be significantly different either.
We expect SGEV to perform better than SGGP on datasets where for the given
hyperparameters the learning curve saturates, or even deteriorates as the sup-
port set is increased, as is the case in the example we give in Fig. 2. Interleaving
support set selection and hyperparameter learning schemes proves on the other
hand to be promising. The experiments on KIN40K show that this scheme gives
much superior performance to the two isolated learning schemes.

It is interesting to note the relation between the RRGP and the Nyström
approximation proposed by Williams and Seeger (2001). In that approach the
predictive mean and variance are respectively given by:

m(x∗) = k>∗
[
Knm K−1

mm K>
nm + σ2 I

]−1
y ,

v(x∗) = σ2 + k∗∗ + k>∗
[
Knm K−1

mm K>
nm + σ2 I

]−1
k∗ .

(39)

These expressions are very similar to those obtained for the augmented RRGP,
given by (29). However, the additional term in the approximate covariance for
the augmented RRGP ensures that it is positive definite, see (Williams et al.,
2002), and that therefore our approach does not suffer from negative predictive
variances as is the case for the Nyström approximation for GPs.

Future work will involve the theoretical study of other sparse approximations
to GPs that have been recently proposed, which we enumerate in Sect. 1, and
the experimental comparison of these methods to those presented in this paper.

A Useful Algebra

A.1 Matrix Identities

The matrix inversion lemma, also known as the Woodbury, Sherman & Morrison
formula states that:

(Z + UWV >)−1 = Z−1 − Z−1U(W−1 + V >Z−1U)−1V >Z−1, (A-40)

assuming the relevant inverses all exist. Here Z is n×n, W is m×m and U and V
are both of size n×m; consequently if Z−1 is known, and a low rank (ie. m < n)
perturbation are made to Z as in left hand side of eq. (A-40), considerable
speedup can be achieved. A similar equation exists for determinants:

|Z + UWV >| = |Z| |W | |W−1 + V >Z−1U | . (A-41)

Let the symmetric n× n matrix A and its inverse A−1 be partitioned into:

A =
(

P Q
QT S

)
, A−1 =

(
P̃ Q̃

Q̃T S̃

)
, (A-42)

where P and P̃ are n1 × n1 matrices and S and S̃ are n2 × n2 matrices with
n = n1 + n2. The submatrices in A−1 are given in Press et al. (1992, p. 77):

P̃ = P−1 + P−1QM−1QT P−1,

Q̃ = −P−1QM−1, where M = S −QT P−1Q

S̃ = M−1 .

(A-43)

There are also equivalent formulae

P̃ = N−1,

Q̃ = −N−1QS−1, where N = P −QS−1QT

S̃ = S−1 + S−1QT N−1QS−1 .

(A-44)

A.2 Product of Gaussians

When using linear models with Gaussian priors, the likelihood and the prior are
both Gaussian. Their product is proportional to the posterior (also Gaussian),

and their integral is equal to the marginal likelihood (or evidence). Consider the
random vector x of size n× 1 and the following product:

N (x|a, A)N (P x|b, B) = zcN (x|c, C) , (A-45)

where N (x|a, A) denotes the probability of x under a Gaussian distribution
centered on a (of size n × 1) and with covariance matrix A (of size n × n). P
is a matrix of size n × m and vectors b and c are of size m × 1, and matrices
B and C of size m×m. The product of two Gaussians is proportional to a new
Gaussian with covariance and mean given by:

C =
(
A−1 + P B−1P>)−1

, c = C
(
A−1a + P B b

)
.

The normalizing constant zc is gaussian in the means a and b of the two Gaus-
sians that form the product on the right side of (A-45):

zc = (2 π)−
m
2 |B + P>A−1P |

× exp
(
−1

2
(b− P a)>

(
B + P>A−1P

)−1
(b− P a)

)
.

A.3 Incremental Cholesky Factorization for SGQM

Consider the quadratic form:

Q(α) = −v>α +
1
2

α>A α , (A-46)

where A is a symmetric positive definite matrix of size n×n and v is a vector of
size n × 1. Suppose we have already obtained the minimum and the minimizer
of Q(α), given by:

Qopt = −1
2

v>A−1 v , αopt = A−1 v . (A-47)

We now want to minimize an augmented quadratic form Qi(α), where α is
now of size n × 1 and A and v are replaced by Ai and vi of size n + 1 × n + 1
and n + 1× 1 respectively, given by:

Ai =
[
A bi

b>i ci

]
, vi =

[
v
vi

]
.

Assume that vector bi of size n× 1 and scalars ci and vi are somehow obtained.
We want to exploit the incremental nature of Ai and vi to reduce the number
of operations necessary to minimize Qi(α). One option would be to compute
A−1

i using inversion by partitioning, with cost O
(
(n + 1)2

)
if A−1 is known.

For iterated incremental computations, using the Cholesky decomposition of Ai

is numerically more stable. Knowing L, the Cholesky decomposition of A, the
Cholesky decomposition Li of Ai can be computed as:

Li =
[
L 0
z>i di

]
, L zi = bi, d2

i = ci − z>i zi . (A-48)

The computational cost is O(n2/2), corresponding to the computation of zi by
back-substitution. Qmin

i can be computed as:

Qmin
i = Qmin − 1

2
u2

i , ui =
1
di

(vi − z>i u) , Lu = v , (A-49)

and the minimizer αopt is given by:

L>αopt = ui , ui =
[
u
ui

]
. (A-50)

Notice that knowing u from the previous iteration, computing Qmin
i has a cost

of O(n). This is interesting if many different i’s need to be explored, for which
only the minimum of Qi is of interest, and not the minimizer. Once the optimal
i has been found, computing the minimizer αopt requires a back-substitution,
with a cost of O(n2/2).

It is interesting to notice that as a result of computing Li one obtains “for
free” the determinant of Ai (an additional cost of O(m) to th eO(nm) cost of the
incremental Cholesky). In Sect. A.4 we give a general expression of incremental
determinants.

A.4 Incremental Determinant

Consider a square matrix Ai that has a row and a column more than square
matrix A of size n× n:

Ai =
[

A bi

c>i di

]
. (A-51)

The determinant of Ai is given by

|Ai| = |A| · (di − b>i A−1ci) . (A-52)

In the interesting situation where A−1 is known, the new determinant is com-
puted at a cost of O(m2).

A.5 Derivation of (29)

We give here details of the needed algebra for computing the predictive distri-
bution of the Reduced Rank Gaussian Process. Recall that at training time we
use a finite linear model approximation, with less weights than training inputs.
Each weight has an associated support input possibly selected from the training
inputs. The linear model and prior on the weights are:[

f
f∗

]
= Φnm ·

[
α
α∗

]
, p

([
α
α∗

]∣∣∣∣x∗, X, θ

)
∼ N

(
0, A−1

)
.

where we have defined

Φnm =
[

Knm k∗
k(x∗)> k∗∗

]
, A =

[
Kmm k(x∗)

k(x∗)> k∗∗

]
. (A-53)

The induced prior over functions is Gaussian with mean zero and covariance
matrix C:

p

([
f
f∗

]∣∣∣∣x∗, X, θ

)
∼ N (0, C) , C = Φnm A−1 Φ>nm . (A-54)

We use inversion by partitioning to compute A−1:

A−1 =
[
K−1

mm + K−1
mmk(x∗)k(x∗)>K−1

mm −K−1
mmk(x∗)/c∗

−k(x∗)>K−1
mm/c∗ 1/c∗

]
,

c∗ = k∗∗ − k(x∗)>K−1
mmk(x∗) ,

which allows to obtain C:

C =
[
Cnn k∗
k>∗ k∗∗

]
, Cnn ≡ Knm K−1

mm K>
nm + v∗v>∗ /c∗ , (A-55)

where v∗ ≡ k∗ −Knm K−1
mm k(x∗). We can now compute the distribution of f∗

conditioned f :

p(f∗|f ,x∗, X, θ) ∼ N
(
k>∗ C−1

nn f , k∗∗ − k>∗ C−1
nn k∗

)
. (A-56)

The predictive distribution, obtained as in (5), is Gaussian with mean and vari-
ance given by (29). We repeat their expressions here for convenience:

m∗(x∗) = k>∗
[
Knm K−1

mm K>
nm + σ2 I + v∗v>∗ /c∗

]−1
y ,

v∗(x∗) = σ2 + k∗∗ + k>∗
[
Knm K−1

mm K>
nm + σ2 I + v∗v>∗ /c∗

]−1
k∗ .

B Matlab Code for the RRGP

We believe that one very exciting part of looking at a new algorithm is “trying it
out”! We would like the interested reader to be able to train our Reduced Rank
Gaussian Process (RRGP) algorithm. Training consists in finding the value of
the hyperparameters that minimizes the negative log evidence of the RRGP (we
give it in Sect. 4.1). To do this we first need to be able to compute the negative
log evidence and its derivatives with respect to the hyperparameters. Then we
can plug this to a gradient descent algorithm to perform the actual learning.

We give a Matlab function, rrgp nle, that computes the negative log evi-
dence of the RRGP and its derivatives for the squared exponential covariance
function (given in (1)). The hyperparameters of the squared exponential covari-
ance function are all positive. To be able to use unconstrained optimization, we
optimize with respect to the logarithm of the hyperparameters.

An auxiliary Matlab function sq dist is needed to compute squared dis-
tances. Given to input matrices of sizes d × n and d ×m, the function returns
the n × m matrix of squared distances between all pairs of columns from the
inputs matrices. The authors would be happy to provide their own Matlab MEX
implementation of this function upon request.

Inputs to the Function rrgp nle:

– X: D + 2× 1 vector of log hyperparameters, X = [log θ1, . . . log θD+1, log σ]>,
see (1)

– input: n×D matrix of training inputs
– target: n× 1 matrix of training targets
– m: scalar, size of the support set

Outputs of the Function rrgp nle:

– f: scalar, evaluation of the negative log evidence at X
– f: D + 2× 1 vector of derivatives of the negative log evidence evaluated at X

Matlab Code of the Function rrgp nle:

function [f,df] = rrgp_nle(X,input,target,m)

% number of examples and dimension of input space
[n, D] = size(input);
input = input ./ repmat(exp(X(1:D))’,n,1);

% write the noise-free covariance of size n x m
Knm = exp(2*X(D+1))*exp(-0.5*sq_dist(input’,input(1:m,:)’));
% add little jitter to Kmm part
Knm(1:m,:) = Knm(1:m,:)+1e-8*eye(m);

Cnm = Knm/Knm(1:m,:);
Smm = Knm’*Cnm + exp(2*X(D+2))*eye(m);
Pnm = Cnm/Smm;
wm = Pnm’*target;

% compute function evaluation
invQt = (target-Pnm*(Knm’*target))/exp(2*X(D+2));
logdetQ = (n-m)*2*X(D+2) + sum(log(abs(diag(lu(Smm)))));
f = 0.5*logdetQ + 0.5*target’*invQt + 0.5*n*log(2*pi);

% compute derivatives
df = zeros(D+2,1);

for d=1:D
Vnm = -sq_dist(input(:,d)’,input(1:m,d)’).*Knm;
df(d) = (invQt’*Vnm)*wm - 0.5*wm’*Vnm(1:m,:)*wm+...
-sum(sum(Vnm.*Pnm))+0.5*sum(sum((Cnm*Vnm(1:m,:)).*Pnm));

end
aux = sum(sum(Pnm.*Knm));
df(D+1) = -(invQt’*Knm)*wm+aux;
df(D+2) = (n-aux) - exp(2*X(D+2))*invQt’*invQt;

Acknowledgements

The authors would like to thank Lehel Csató, Alex Zien and Olivier Chapelle
for useful discussions.

This work was supported by the Multi-Agent Control Research Training
Network - EC TMR grant HPRN-CT-1999-00107, and the German Research
Council (DFG) through grant RA 1030/1.

Bibliography

Cressie, N. (1993). Statistics for Spatial Data. John Wiley & Sons Inc.
Csató, L. (2002). Gaussian Processes – Iterative Sparse Approximation. PhD

thesis, Neural Computing Research Group, www.ncrg.aston.ac.uk/Papers.
Csató, L. and Opper, M. (2002). Sparse online gaussian processes. Neural

Computation, 14(3):641–669.
Gibbs, M. and MacKay, D. J. C. (1997). Efficient implementation of gaussian

processes. Technical report, Cavendish Laboratory, Cambridge, UK.
Lawrence, N., Seeger, M., and Herbrich, R. (2003). Fast sparse gaussian process

methods: The informative vector machine. In Neural Information Processing
Systems 15.

MacKay, D. J. C. (1994). Bayesian non-linear modelling for the energy predic-
tion competition. In ASHRAE Transactions, V.100, Pt.2, pages 1053–1062,
Atlanta Georgia. ASHRAE.

Mackay, D. J. C. (1997). Gaussian Processes: A replacement for supervised Neu-
ral Networks? Technical report, Cavendish Laboratory, Cambridge University.
Lecture notes for a tutorial at NIPS 1997.

Neal, R. M. (1996). Bayesian Learning for Neural Networks. Lecture Notes in
Statistics, no. 118. Springer, New York.

Press, W., Flannery, B., Teukolsky, S. A., and Vetterling, W. T. (1992). Numer-
ical Recipes in C. Cambridge, second edition.

Rasmussen, C. E. (1996). Evaluation of Gaussian Processes and Other Methods
for Non-linear Regression. PhD thesis, Dept. of Computer Science, University
of Toronto.

Rasmussen, C. E. (2002). Reduced rank gaussian process learning. Unpublished
Manuscript.

Schölkopf, B. and Smola, A. J. (2002). Learning with Kernels. MIT Press,
Cambridge.

Schwaighofer, A. and Tresp, V. (2003). Transductive and inductive methods for
approximate gaussian process regression. In Advances in Neural Information
Processing Systems 15.

Seeger, M. (2003). Bayesian Gaussian Process Models: PAC-Bayesian General-
isation Error Bounds and Sparse Approximations. PhD thesis, University of
Edinburgh.

Seeger, M., Williams, C., and Lawrence, N. (2003). Fast forward selection to
speed up sparse gaussian process regression. In Workshop on AI and Statistics
9.

Smola, A. J. and Bartlett, P. L. (2001). Sparse greedy Gaussian process regres-
sion. In Advances in Neural Information Processing Systems 13.

Smola, A. J. and Schölkopf, B. (2000). Sparse greedy matrix approximation for
machine learning. In International Conference on Machine Learning 13, pages
911–918.

Tipping, M. E. (2001). Sparse bayesian learning and the relevance vector ma-
chine. Journal of Machine Learning Research, 1:211–244.

Tresp, V. (2000). A bayesian committee machine. Neural Computation, 12.
Wahba, G., Lin, X., Gao, F., Xiang, D., Klein, R., and Klein, B. (2000). The

bias-variance tradeoff and the randomized GACV. In Advances in Neural
Information Processing Systems 12.

Williams, C. (1997a). Computation with infinite neural networks. In Advances
in Neural Information Processing Systems 9.

Williams, C. (1997b). Prediction with gaussian processes: From linear regression
to linear prediction and beyond. Technical Report NCRG/97/012, Dept of
Computer Science and Applied Mathematics. Aston University.

Williams, C., Rasmussen, C. E., Schwaighofer, A., and Tresp, V. (2002). Ob-
servations of the nystr?m method for gaussiam process prediction. Technical
report, University of Edinburgh.

Williams, C. and Seeger, M. (2001). Using the Nyström method to speed up
kernel machines. In Advances in Neural Information Processing Systems 13.

