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Abstract

Considerable progress was recently achieved on semi-supervised
learning, which differs from the traditional supervised learning by
additionally exploring the information of the unlabelled examples.
However, a disadvantage of many existing methods is that it does
not generalize to unseen inputs. This paper investigates learning
methods that effectively make use of both labelled and unlabelled
data to build predictive functions, which are defined on not just
the seen inputs but the whole space. As a nice property, the pro-
posed method allows efficient training and can easily handle new
test points. We validate the method based on both toy data and
real world data sets.

1 Introduction

Recent years have seen considerable attention on semi-supervised learning, which
differs from traditional supervised learning by making use of unlabelled data. In
many applications, like text categorization, collecting labelled examples costs hu-
man efforts, while vast amounts of unlabelled data are often readily available and
offer some additional information. This is the situation, in which semi-supervised
learning becomes very useful. In the paradigm, the function of interest is regularized
to be a priori consistent with the inherent structure of input density p(x). Several
advances were recently achieved, like Markov random walks [8], cluster kernels [4],
Gaussian random fields [11], and regularization on graphs [1, 10].

So far most of the efforts have been invested in a transductive setting that predicts
only for observed inputs. Yet, in many applications there is a clear need for in-
ductive learning, for example, in hand-written zip code recognition or in document
classification. Unfortunately, most existing semi-supervised learners do not readily
generalize to new test data. A brute force approach is to incorporate the new test
points and re-estimate the function using semi-supervised learning, but this is very
inefficient. Chapelle et al. [4] suggest to approximate new test points with seen
data points, which is however an indirect way. Another problem of semi-supervised
transduction is the computational complexity. Since an n × n matrix needs either
to be inverted [11, 10] or diagonalized [4, 1], semi-supervised transduction scal-
ing as O(n3). As potentially a vast amount of unlabelled points are involved, the
computational cost becomes prohibitive.



This paper extends the approach suggested in [10] to realize a family of semi-
supervised inductive learners with m ≤ n finite basis functions. The methods learn
a function defined on the whole input space by solving only a linear system of size
m (Sec. 2). In Sec. 3 we introduce the adopted regularizer induced by the normal-
ized graph Laplacian, and connect its limit to the expected squared gradient of the
function weighted by p(x), giving rise to a natural density-dependent smoothness
penalty. We then justify the adopted basis function expansion via the view of learn-
ing eigenfunctions in a Hilbert space. The connection clarifies which representation
of functions is suitable for a good approximation (Sec. 4). Finally we present results
of an empirical study in Sec. 5.

2 Semi-Supervised Function Induction

Suppose that, given n inputs {xi}n
i=1 i.i.d. sampled from a density p(x), one observes

responses {yi}l
i=1 of an underlying function f(x) on the first l ≤ n inputs (without

loss of generality) plus some stationary additive noises. The goal is to estimate
the underlying function f . Supervised induction ignores the existence of unlabelled
data {xi}n

i=l+1, and seeks for a f that minimizes the cost

Q(f) =
1

2

l∑
i=1

[
yi − f(xi)

]2
+

λ

2
‖f‖2H (1)

where ‖f‖2 is the norm defined in a Hilbert spaceH. The first term of Q(f) enforces
f to be close to observations. The second term, called the regularizer, ensures the
smoothness of f . A reasonable assumption behind the regularizer is that close
inputs should have similar function values (as in ridge regression). The notion of
closeness between two inputs usually does not regard their context of input density:
for example, the two points might be separated by a low-density region.

Semi-supervised learning employs a different assumption, in which the smoothness
of f is not evenly ensured but depends on the input density, i.e. f should change
slowly in a dense region if compared to a low-density region. A possible approach
to realize such an assumption is given by [10]:

S(fn) =

n∑
i,j=1

Wij

[f(xi)√
Dii

− f(xj)√
Djj

]2

, (2)

where fn ∈ R1×n denotes function values on the seen inputs, and the matrix W
satisfying Wij ≥ 0 and Wii = 0 for all i ≤ n can be viewed as a symmetric similarity
between xi and xj (e.g., Wij = exp(−‖xi − xj‖2/2σ−2), and is enforced to be zero
if i = j), and Dii =

∑
j Wij reflects the local density of xi (analog to the Parzen

density). The regularizer penalizes the functions that change rapidly across nearby
inputs. It is not hard to see that

S(fn) = fT
n (I − S)fn

where S ∈ Rn×n is the normalized similarity matrix with S = D− 1
2 WD− 1

2 with
D being a diagonal matrix {D}ii = Dii. The matrix ∆ = I − S is called normalized
graph Laplacian in spectral graph theory [5]. S(fn) defines a regularizer for only
the functions defined at discrete points. To carry out induction, we consider the
class of approximating fucntions to be

f(x) =

m∑
j=1

wjϕj(x) (3)

where {ϕj(x)}m
j=1 are basis functions, which are not necessary orthogonal, and

w = [w1, . . . , wm] are the weights. In this paper we will only consider radial basis



functions (RBF) ϕj(x) = exp(−‖x − xj‖2/2σ−2
b ), defined either for the whole set

of seen inputs {xj}n
j=1 or for a subset. In general, f describes a large class of

functions, including neural networks with a finite number of hidden nodes. Now let
ϕn ∈ Rm×n be the matrix with {ϕn}ji = ϕj(xi), and ϕl ∈ Rm×l are the first l
columns of ϕn corresponding to responses of basis functions on the labelled data.
By plugging the representation of f into the regularizer Eq. (2), we obtain a cost
function which is similar to Eq. (1)

Q(w) =
1

2
(yl −ϕlw)T (yl −ϕlw) +

λ

2
wT ϕn∆ϕT

nw (4)

By setting the derivatives of the cost function with respect to w to be zero, we
obtain as optimal weights ŵ = (ϕlϕ

T
l + λϕnΩϕT

n )−1ϕlyl where Ω = ϕn∆ϕT
n . Let

ϕ(x) = [ϕ1(x), . . . , ϕm(x)]T . The approximated function is then given by
f̂(x) = ϕT (x)(ϕlϕ

T
l + λΩ)−1ϕlyl (5)

The proposed method has certain advantages. First, it builds an inductive learner
able to handle new test points. The computation for prediction only scales linearly
as O(m), while transduction has to re-compute the predictor whenever new test
points arrive, which scales as O(n3). Second, for training the algorithm inverts an
m×m matrix ϕT

l ϕ + λΩ, which can be more efficient than dealing with the n× n
matrix in the transductive setting, assuming m � n.

3 Density-Dependent Regularizer and Graph Laplacian

A different regularizer was applied in [1, 11, 6],

L(fn) =
∑
i,j

Wij

[
f(xi)− f(xj)

]2
= fT

n (D −W )fn (6)

Instead, we choose the normalized graph Laplacian as in [10], because the normal-
ization by Dii in Eq. (2) makes the smoothness constraint adapted to the local
context of input density. Intuitively, the penalty strength with respect to a certain
distance in a dense input region should be equal to the penalty strength for a rela-
tively longer distance in a low-density region. Bousquet et al. [3] showed that the
limiting case of L(fn) gives a regularizer

∫
‖∇f(x)‖2p2(x)dx. We can make a similar

proof and derive the following proposition:

Proposition 1. For any function f ∈ C2(Rd) with bounded Hessian, then

lim
σ→0

n→∞

1

n− 1
S(fn) ∝

∫
‖∇f(x)‖2p(x)dx (7)

The proposition states that the limiting case of S(fn) gives the expected smoothness
E(‖5f(x)‖2) with respect to p(x). Due to space limitations, we will provide the proof
in a coming technical report. Now we compare the three regularization terms: (1)∫
‖∇f(x)‖2dx: This density-free constraint has been widely applied in supervised

learning, e.g. in spline smoothing. For a linear model, it gives the maximum-margin
criterion; (2)

∫
‖∇f(x)‖2p2(x)dx: This is the regularizer approximated by L(fn);

(3)
∫
‖∇f(x)‖2p(x)dx: This case corresponds to the regularizer S(fn) induced by

the normalized graph Laplacian.

The second and third regularizers are density-dependent, giving rise to semi-
supervised learning. Though L(fn) might be considered to be more intuitive than
S(fn), this is not the case in the limiting case, while Eq. (2) converges to the ex-
pected squared gradient of f with respect to p(x). The difference between both
regularizers can be well illustrated by the toy problem shown in Fig. 1, where we
can see that L(fn) over-emphasizes the smoothness on dense region while Eq. (2)
imposes a balanced smoothness constraint over p(x).



Figure 1: Classification on the doll toy data. Left panel: toy data; middle panel: normal-
ized; right panel: non-normalized.

4 Optimal Basis Expansion for Semi-Supervised Induction

The regularizer
∫
‖∇f(x)‖2p(x)dx defines a norm ‖f‖2H in a reproducing kernel

Hilbert space H with infinite dimensions, while Eq. (3) restricts our approximated
function class in an m-dimensional Hilbert space Hm. In this section we further
study the properties of Hm and consider the problem of finding optimal basis func-
tions in Eq. (3) that lead to optimal Hm.

4.1 The Spectrum of Hm

Suppose H is associated with a set of eigenfunctions φk(x) and eigenvalues λk

such that ‖f‖2H =
∑∞

k=1 λkc2
k, where ck is the inner product 〈f, φk〉. Recall that

the norm penalizes functions with large projections on the eigenfunctions with the
leading eigenvalues. Assuming that the null space of the Hilbert space as rank zero,
this means that functions are favored which have a large projection onto the space
defined by the eigenfunctions with the smallest eigenvalues. In the following we call
those simply the set of smoothest eigenfunctions since reasonable regularizers would
favor smooth eigenfunction. Thus, λk indicates the smoothness of eigenfunction φk,
i.e. smaller λk means smoother φk. Following our discussion, minimizing ‖f‖2H
enforces f to be close to the set of smooth eigenfunctions φk with smallest λk.

The difficulty of transforming semi-supervised transduction to induction is a result
of the fact that eigenfunctions that construct H are unknown, since we can only
infer the discrete realizations of eigenfunctions on the finite i.i.d. inputs {xi}n

i=1,
i.e. eigenvectors of ∆1, giving rise to a regularizer fT

n∆fn on finite function values
rather than ‖f‖2H. Here we will point out that the proposed induction in Sec. 2
implicitly reconstructs eigenfunctions and eigenvalues in Hm that give the same
smoothness measure as in H. Let the eigenfunctions in Hm have the form

φ̃k(x) =

m∑
j

αjkϕj(x) for k = 1, . . . , m. (8)

which satisfy the unitary condition
∫

φ̃k(x)2p(x)dx = 1 . Following our previous
discussion, the m eigenfunctions in Hm should be related to the m eigenfunctions
in H with the m smallest eigenvalues. We shall let φ̃k(x) preserve the smoothest
eigenfunctions of H reflected by the eigenvectors of ∆ with the smallest eigenvalues
based on the empirical data, giving rise to the constrained minimization problem:

min
αk=[α1k,...,αmk]T

φ̃
T

k ∆φ̃k, subject to:
1

n
φ̃

T

k φ̃k = 1 (9)

1The n× n matrix induces n eigenvectors that approximate the original infinite eigen-
functions induced by ‖f‖2H. See the relation between eigenvectors and eigenfunctions in
[2].



Figure 2: Geometry interpretation: The right case gives a better Hm to preserve the
structure of H.

where φ̃k = [φ̃k(x1), . . . , φ̃k(xn)]T , and the constraint is the the unitary condition
approximated by empirical averaging on i.i.d. samples. The minimization restricts
φ̃k to lie on a hyper sphere and enforces it close to the smoothest eigenvectors of
∆. Its Lagrangian formulism suggests the equivalence to a generalized eigendecom-
position problem which has m solutions

(ϕn4ϕn
T )uk = λ̃k(ϕnϕn

T )uk, for k = 1, . . . , m (10)

where ϕn ∈ Rm×n is as defined in Eq. (4), uk ∈ Rm×1 are generalized eigenvectors,
and λ̃k are generalized eigenvalues. Finally, the estimated eigenfunctions are

φ̃k(x) =
√

nuT
k ϕ(x), for k = 1, . . . , m (11)

where ϕ(x) = [ϕ1(x), . . . , ϕm(x)]T . The above equation gives m orthogonal ba-
sis functions in Hm that preserve the smoothest eigenfunctions φk(x) which are
discretely realized as the eigenvectors of ∆ with the smallest eigenvalues. The cor-
responding {nλ̃k}m

k=1 reflect the smoothness of {φ̃k(x)}m
k=1 in the way that a smaller

value indicates a smoother function. Then the smoothness of an f ∈ Hm in Eq. (3)
is given by ‖f‖2Hm

=
∑m

k=1 nλ̃k c̃2
k, where c̃k = 〈f, φ̃k〉. The cost function Eq. (4) is

thus interpreted as an empirical loss plus the norm ‖f‖2Hm
.

4.2 Geometry Interpretations: What is a Good Hm

As illustrated in Fig. 2, the unit norm ‖f‖2H = 1 restricts f to lie on a hyper ellipsoid
E with the axes corresponding to the eigenfunctions {φk(x)}∞k=1 and the span along
each axis is scaled by λk

− 1
2 (i.e. smooth eigenfunctions correspond to the principle

axes of E). In addition, ‖f‖2Hm
= 1 restrict f to lie on an m-dimensional ellipsoid

Em which is the intersection of E in Hm. The eigenfunctions Eq. (11) are the axes of
Em and the spans of axes are scaled by {λ̃−

1
2

k }m
k=1 . It is clear that a good Hm should

preserve the principle axes of E , i.e. approximating the smoothest eigenfunctions in
H. Therefore we use the volume of Em to define the optimal Hilbert space Hm:

Hopt
m = arg max

Hm∈A

m∑
k=1

1

λ̃2
k + σ̃2

(12)

where A is the considered domain of Hm, and σ̃ is a small number to avoid the
difficulties when λ̃k ≈ 0. Eq. (12) defines how we should choose the optimal basis-
function set in practice, for example, by tuning the width, number, and centers of
RBF basis functions.

Finally we point out that learning the eigenfunctions of an RKHS has already been
discussed in various contexts, like kernel PCA for non nonlinear dimensionality
reduction [7], Nyström method for speeding up kernel methods [9], and out-of-
sample extension for manifold learning [2]. However, our method is derived in a
different context where the kernel function is assumed unknown.



Figure 3: Semi-supervised induction on the two-moon data: top-left, each class has only
one labelled example; top-right, induction with 120 basis functions; bottom-left, induction
with 60 basis functions; bottom-right, 1200 random trials of function settings showing
the connection between predictive accuracy and the performance indicator suggested in
Eq. (12). For the illustration of induction, the black bold curve gives the classification
boundary and the gray level indicates the function value.

5 Empirical Study

5.1 Toy Data

We test the proposed algorithms on the two-moon toy problem [10]. As shown
in Fig. 3, 120 inputs are generated from two underlaying classes and each class
has only one labelled example. The performance of transduction has been shown in
[10], which predicts for only seen inputs. In contrast, the induction learns a function
defined in the whole space and gives a classification boundary. We also estimate
the eigenfunctions based on the two-moon data, using 120 RBF basis functions,
and illustrate the 6 smoothest ones in Fig. 4. The eigenfunctions expose the the
structure of input density in different resolutions, i.e. the first eigenfunction reflects
the density of inputs, the second one exactly reflects the two different classes, the
third one describes the isolated “island” in the density, and the following ones
indicate more details, behaving like the Fourier transformation to describe signals
in different frequency bands. In the next, we repeat 1200 trials by randomizing
the number of RBF basis functions (between 10 and 110) and the width (between
0.1 and 0.2), and for each trial get the classification accuracy and the volume of
corresponding Em Eq. (12). We plot all the 1200 accuracy-volume dots in the
bottom-right of Fig. 3, which indicates that a larger volume leads to a better and
stabler classifier.

5.2 Digit Recognition

We test the performance of algorithms in a digit recognition task based on the USPS
benchmark. We follow the setting in [10] and pick up the digits 1, 2, 3, and 4, with
a total of 3874 examples. As comparison, we also test support vector machines, as



Figure 4: The six eigenfunctions with smallest eigenvalues, estimated with 120 basis
functions. The eigenfunctions not only expose the structure of input density, but also
help to understand semi-supervised learning: choosing the smooth eigenfunctions that
also explain the labelled examples well, which gives the second eigenfunction in the case
shown in Fig. 3. (Note: the figure is more informative if enlarged on the screen.)

Figure 5: Left panel: Test results for digit recognition based on USPS data. Right panel:
Test results for text categorization based on 20-newsgroup data.

the baseline, and semi-supervised transduction described by [10]. We test induction
learners with randomly selected m inputs to form RBF basis functions, where m is
100%, or 10% of seen inputs. The parameter λ in Eq. (4) is set to be 100, which
corresponds to α = 0.99 in [10]. We split the data into seen (including labelled
and unlabelled data) and unseen sets, 90% vs. 10%, and examine the predictive
accuracy on the unseen set given a number of labelled examples in the seen set.
For the transductive learner, each time we have to include one test point into the
affinity matrix and then predict its label. Note it is unfair to include the whole
“unseen” sets (to make computation cheaper) because then transduction has a much
larger affinity matrix than induction. The setting makes the test computationally
expensive, but highlights the point that induction can cheaply handle new test
points. We repeat all the tests for 50 times, i.e. each time a different seen/unseen
split and a different random set of m seen inputs for basis functions. As shown
in Fig. 5-(a), the induction taking the whole seen set as basis functions gives the
accuracy almost as excellent as transduction. The functions formed by 10% basis
functions perform a bit worse than the tranductive learner but still much better
than SVMs, and is computationally much cheaper than the transduction.



5.3 Text Categorization

In this experiment we test the algorithms for text categorization based on the 20-
newsgroup data set. We take the same setting as in [10], i.e. choosing the four topics
autos, motorcycles, baseball and hockey and taking the same preprocessing steps to
finally get 3970 TFIDF vectors. The distance between documents d(xi,xj) = 1 −
〈xi,xj〉/‖xi‖‖xj‖ is applied to form RBF functions for affinity matrix (with width
0.15), basis functions for induction (width 0.15) [10]. We then perform 50 trials with
random 90% seen and 10% unseen split and report the average performance of each
algorithm in Fig. 5-(b). We find that the induction with basis functions formed by
100% seen inputs (m=3573) performs very closely to the transduction learner. The
computationally cheaper inductive learner with m = 357 basis functions trades off
the accuracy, but still outperforms SVMs.

6 Conclusion

This paper realizes a semi-supervised inductive algorithm by extending previous
transductive approaches. The idea is to use basis function expansion to form a
regularizer induced by the normalized graph Laplacian. We clarify the reason of
choosing the adopted smoothness regularizer and discuss what are the desired ap-
proximating functions in terms of eigenfunction estimation. Finally the effectiveness
of the proposed algorithm is illustrated on both toy problem and digit recognition.
An unsolved problem for semi-supervised learning is the model selection when little
labelled examples are known, which should be an interesting future work.
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