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Texture and haptic cues in slant discrimination:
reliability-based cue weighting

without statistically optimal cue combination
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A number of models of depth–cue combination suggest that the final depth percept results from a weighted
average of independent depth estimates based on the different cues available. The weight of each cue in such
an average is thought to depend on the reliability of each cue. In principle, such a depth estimation could be
statistically optimal in the sense of producing the minimum-variance unbiased estimator that can be con-
structed from the available information. Here we test such models by using visual and haptic depth informa-
tion. Different texture types produce differences in slant-discrimination performance, thus providing a means
for testing a reliability-sensitive cue-combination model with texture as one of the cues to slant. Our results
show that the weights for the cues were generally sensitive to their reliability but fell short of statistically
optimal combination—we find reliability-based reweighting but not statistically optimal cue combination.
© 2005 Optical Society of America
OCIS codes: 330.4060, 330.5510, 330.6100, 330.7310.
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. INTRODUCTION
n sensor fusion it is typically assumed that the different
ources of information relative to the variable of interest
re combined systematically to obtain an estimate of the
ariable. Clark and Yuille1 classified the combination
ules as belonging to the class of either weak-fusion or
trong-fusion models. In weak fusion the data coming
rom the sensors are assumed to be independent, and they
re linearly combined to obtain a single estimate. In
trong fusion the “modules” processing the input data
rom the sensors are not independent; that is, the esti-
ates from each module are not independent, and the fu-

ion mechanism might be nonlinear.
In vision science the currently most popular models for

epth perception are weak-fusion models, partly because
trong fusion is difficult to characterize.2 In weak fusion
or depth perception the final depth estimate results from

weighted average of the independent depth estimates
btained from each source of information or cue, such as
isparity, texture, or motion-parallax.3–5 A more complex
odel than weak fusion is the modified weak-fusion
odel.4 In this model a specific type of interaction be-

ween cues promote them “to be on equal footing [so that]
he values obtained from them are commensurate” (Ref.
, p. 392). Except for this interaction, called promotion,
ues are assumed to be independent. In this paper we will
hus not make a distinction between weak fusion and
1084-7529/05/050801-9/$15.00 © 2
odified weak fusion. In these models the weights are de-
ermined by the reliability of the corresponding cue: A
ore reliable cue should have a larger weight in the com-

ined estimate.4,5 In effect they are reliability-based
eighted-average models. Young et al.6 reported evidence

or a reliability-based weighting of cues in shape from tex-
ure and motion, the kinetic depth effect. The cues were
ade less reliable by either randomly changing the shape

f the texel or jittering the otherwise smooth motion of a
ylinder shape. Goodale et al.7 trained gerbils to jump
rom one platform to another. They reported that a de-
rease in the size of the landing platform induced the ger-
ils to increase the number of their vertical head move-
ents. The authors interpret this behavior as a

ompensation for the loss of information from the looming
f the landing surface. To estimate the weights of cues
mpirically Young et al.6 proposed a technique they
amed perturbation analysis in which a small discrep-
ncy is introduced in the depth depicted by one of the
ues. The larger the change in the depth percept induced
y the perturbation, the larger the influence of the cue (its
eight). It is important not to introduce too-large pertur-
ations, as the visual system is assumed to use a robust
eighting rule, that is, to ignore or at least nonlinearly

eweight cues if they are too discrepant from the other
ues.

Assuming independence of cues and independent nor-
005 Optical Society of America
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ally distributed internal noise for each cue, the
inimum-variance unbiased estimator of depth is a
eighted average. The weights in this average are propor-

ional to the inverse of the variances associated with the
ues.4,5 Ernst and Banks5 formulated depth–cue combina-
ion as a maximum-likelihood estimator (MLE) relating
iscrimination thresholds to the variance of the underly-
ng estimator and assuming cumulative Gaussian psycho-

etric functions. From these assumptions they predicted
hat the resulting variance of the combined cues estima-
or should be smaller than the variance corresponding to
ach cue alone, if observers combined haptic and visual
nformation in a “statistically optimal” fashion in the

LE sense (in the present article we will use the term
optimal” in this sense). By asking subjects to discrimi-
ate the height of a bar with haptic and visual informa-
ion (binocular disparity) they collected data supporting
tatistically optimal cue combination. To change the reli-
bility of the visual cue, the authors changed the binocu-
ar disparity of the random dots used in the stimulus.

In a recent paper Rosas et al.8 showed that different
exture types elicit different performance in a slant-
iscrimination task. This effect was observed by measur-
ng the discrimination performance of the slant of a tex-
ured plane at different slant levels. An example of this
ffect is illustrated in Fig. 1. The obtained systematic
ank-order based on performance provides a way of test-
ng the reliability-based weighting: In cue combination
he weight assigned to the texture cue should be larger

ig. 1. Effect of texture type on slant discrimination. Top, the
sychometric functions are significantly different for three tex-
ure types (error bars represent 68% confidence intervals). Bot-
om, texture patterns used to obtain the data. Left to
ight: circles, leopard skinlike, and Perlin noise textures. For
his subject (TV) the task was easier when the circle texture was
apped onto the slanted planes while discriminating slant near

0 deg (the standard, depicted as a solid vertical line), reflected
n the steepest psychometric function. Her worst performance
as obtained with Perlin noise.
hen a texture type that allows good slant-from-texture
erformance is mapped on the plane. Furthermore, if the
ore strict “statistically optimal” combination rule holds,

he measured psychometric functions for the texture-only
ondition should be related to the weight for the texture
ue [see Eq. (3) below]. The aim of this paper is to test
oth of these propositions using a slant-discrimination
ask.

In Section 2 we describe a slant-discrimination experi-
ent in which the texture and haptic cues were depicting

he same slant. This experiment allowed us to test the
rediction of an unbiased-minimum-variance-estimate
optimal) model for the change in slant-discrimination
hresholds when both cues are combined. In addition, the
esults were used to determine a range of discrepancies
etween cues when conducting the perturbation analysis
xperiment described in Section 3. The perturbation
nalysis experiment allowed us to determine empirically
he weights assigned to each cue.

. EXPERIMENT 1: SLANT
ISCRIMINATION WITH CONSISTENT
UES
. Stimuli
he stimuli used in this experiment consisted of slanted
lanes onto which different texture types were mapped.
he (virtual) planes could be touched by the subjects with
PHANToM force-feedback device (SensAble Technolo-

ies) attached to their index finger. This device simulates
he forces corresponding to the given plane creating in the
bserver a compelling sensation of a real slanted plane.
he graphic rendering (perspective projection) and tex-
ure mapping were done with the OpenGL library. The
etup was carefully calibrated such that haptic and
raphic planes were aligned.

The texture types used in all our experiments were a
ubset of the ones described and tested by Rosas et al.8 We
sed three different textures: a texture composed of
ircles, which tends to allow the best slant-discrimination
erformance; a leopard skinlike pattern;9 and “Perlin” (co-
erent) noise10 (see Fig. 1).

. Methods
he experimental setup was similar to the one used by
rnst and Banks5: The image from a SONY GDM 500
1-in. monitor was reflected on a mirror. The image sub-
ended approximately 10 deg of visual angle and was mo-
ocularly viewed through an aperture of 2.6-cm diameter.
he subject’s position was controlled by means of a head
nd chin rest located approximately 50 cm from the im-
ge. The subjects used an eye patch to obtain monocular
iewing. The aperture was aligned such that the subject’s
pen eye was looking through the center of the viewing
perture.
Five subjects participated in standard temporal two-

lternative forced-choice experiments. On every trial, one
f the three conditions to be tested (texture only, haptic
nly, and texture and haptic cues) was selected randomly
nd independently. For the texture-only condition, the
wo images were shown sequentially for 1250 ms with a
amp-in, maximum-contrast, ramp-out timing of
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25 ms–1000 ms–125 ms to avoid afterimages. The in-
erstimulus interval was 400 ms. No haptic object was
vailable to the subjects in this condition.
For the trials in which the haptic cue was present (ei-

her a haptic-only or a haptic-and-texture trial), a small
reen sphere was shown on the center of the image
matching the center of the plane such that this position
as the same throughout the experiment), indicating to

he subject that she or he had to touch the surface in or-
er to start the trial. Once the subject touched the sur-
ace, the green sphere disappeared from the screen and
he graphic object was ramped in and out as described be-
ore. If no texture was to be shown in such trial, a gray
eld was projected onto the plane. Subjects were in-
tructed to explore the plane freely during the trial. After
he 1250 ms corresponding to the stimulus presentation
ime, both the graphic and the haptic objects disappeared.
ubjects had to respond which interval contained the
ore slanted plane by pressing one of two (virtual) but-

ons, that were displayed on the screen after the stimuli
ad disappeared; the subjects’ finger was not visible to the
ubject during the experiment. No feedback was provided.

Slant discrimination was tested for each of the three
exture types described above against two comparison
tandards: 27 and 40 deg away from a horizontal plane,
ith the top part tilted in depth away from the viewer.
A combination of adaptive and constant-stimuli proce-

ures was used to collect data: The adaptive procedure11

as used to obtain a crude first estimation of the psycho-
etric function. From this estimate, some critical stimuli

alues were extracted to carry out a constant-stimuli pro-
edure. The final estimation of the psychometric functions
as made with the combined data collected with both pro-

edures, typically between 500 and 700 trials for each
sychometric function. All the fits were forced to cross
hance performance (50% correct in two-alternative
orced-choice) at the slant level of the standard. The fits
ere obtained with the Psignifit Toolbox, which imple-
ents the constrained-MLE method described by Wich-
ann and Hill,12,13 with a cumulative Gaussian function

s underlying shape. The psychometric functions were
btained by fitting the general expression

csx,a,b,ld = l + s1 − ldFsx,a,bd, s1d

here F represents the underlying function with range
etween 0 and 1, a and b the parameters of location and
cale of the psychometric function, and l the lapse rate.
ichmann and Hill12 showed that level-independent

apses (e.g., eye blinks, wrong-button responses, etc.) can
esult in serious estimation errors in fitting psychometric
unctions (with MLE methods). Introducing l as a (highly
onstrained) free parameter during the fit cures this bias
roblem. Thus not all psychometric functions asymptote
t 1.0 on the data sets fitted (see Fig. 2). When obtaining
iscrimination thresholds from our fits [see Eq. (2)], we
sed the underlying function F, that is, the underlying
erformance of subjects when lapse rate is zero.

. Results
n Fig. 2 we show typical examples of the psychometric
unctions obtained. The horizontal axis shows the slant in
egrees and the vertical axis shows the fraction of trials
n which the comparison stimulus was perceived as more
lanted than the standard (the value of the standard is
ndicated with a vertical solid line). Error bars correspond
o 68% confidence intervals obtained from a parametric
ootstrap.13 Different types of curves and symbols
epresent the performance for the different
onditions: texture only, haptic only, and texture and
aptic cues. The unbiased-minimum-variance-estimator
odel predicts that the psychometric functions for both

ues together should be steeper than the psychometric
unctions obtained from either cue by itself, because the
nderlying estimator should have less variance than the
stimator for single cues. In the examples shown in Fig. 2
nly subject PR’s data seem to be consistent with the op-
imal model.

According to the unbiased-minimum-variance model
he following relation holds for single-cue discrimination
hresholds and combined-cues thresholds (from Eq. (7) in
ef. 5):

tth
2 =

tt
2th

2

tt
2 + th

2 . s2d

here tt stands for the discrimination threshold when
exture was the only available cue, th the discrimination
hreshold for haptic only, and tthwhen both cues were
resent in the stimulus. Here the thresholds are defined
s the difference between the comparison stimulus judged
ore slanted 84% of the time and the point of subjective

quality (PSE). It is important to note that when compar-
ng the empirical results for combined cues with the pre-
ictions obtained with Eq. (2), we assume that the thresh-
lds measured in the single-cue condition are
epresentative of the reliability of the cue in the
ombined-cues condition. This critical assumption is not
nique to our experimental design but is standard in all
ue-combination research. As described in Subsection 2.B
e did, however, attempt to discourage subjects from us-

ng different strategies in the single-cue and combined-
ue conditions by randomly interleaving all conditions
ithin a block of trials.
In Fig. 3 we depict the measured thresholds for each

ue independently (open symbols) and for both cues com-
ined (filled circles). In addition Fig. 3 shows the thresh-
lds predicted by the statistically optimal model as filled
quares. There are two plots per subject displaying the
ata for both standards tested. The vertical axes contain
he thresholds on a log scale, while the texture type tested
s on the horizontal axes. Note that for subject AO at stan-
ard 40 deg, the vertical scale is different from the other
lots, because of her small thresholds. The error bars rep-
esent 68% confidence intervals estimated by a paramet-
ic bootstrap routine.13 By visual inspection of the overlap
f the confidence intervals we see that in general our re-
ults are not consistent with the unbiased-minimum-
ariance model: Ignoring the six cases in which the pre-
iction of the statistically optimal model cannot be
istinguished from the performance based on a single cue,
e observe 3 cases of optimal performance (subject PR,

ircles at 40 deg and Perlin noise at both standards) and
1 cases of suboptimal performance. The cases of subop-
imal performance do not follow a single rule of
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ombination: There are cases of performance between
he thresholds for each cue. This is particularly puzzling
ince the observers could have done better by simply ig-
oring the weak cue. Also there are eight cases consistent
ith a veto rule in which subjects “followed” one of the

wo cues instead of combining them when both were
resent. In five of these cases they selected the best cue
or the task.

Although we can conclude from these data that the
eights were not statistically optimal, we cannot dismiss

he reliability-based weighting in general. In Section 3 we
escribe a perturbation analysis experiment that we con-
ucted in order to obtain the weights for both cues. This
llows us to test whether the weights change following
he reliability of the texture cue, albeit not statistically
ptimal.

. EXPERIMENT 2: PERTURBATION
NALYSIS
. Stimuli and Methods
he stimuli and methods used for this experiment were
imilar to the ones described for the previous experiment.
he only difference was that a small discrepancy was in-
roduced in the slant depicted by each cue in the stimuli

ig. 2. Examples of the psychometric functions for slant discrimi
ray squares for data), haptic only (solid black curve for fit, black
t, black circles for data) for subjects NK, PR, and TV. On each pl
hows performance as the fraction of the comparison stimuli perc
vertical solid line. Error bars represent 68% confidence interv

ecorded.
o allow the estimation of weights for each cue according
o perturbation analysis. Perturbation analysis was intro-
uced by Young et al.6 as a methodology to estimate the
eight of a depth cue within the framework of the weak-

usion model. In this model, cue combination is proposed
o be a statistically robust mechanism for parameter esti-
ation. The robustness implies that the depth estimates

erived from every cue are integrated linearly only when
hey do not differ substantially. If the discrepancy in-
reases, then the influence of the most discrepant cue on
he fused percept decreases, and “it should be no surprise
hat [the cues] interact in complex ways.” (Ref. 4, p. 395.)
f the discrepancy is small, the weight of the perturbed
ue is derived from the amount of change in the percept
iven the amount of perturbation (see Fig. 4). Thus if we
re interested in studying the visual system under nor-
al or “ecological” conditions, we should avoid large con-
icts between cues.
Four subjects who participated in the previous experi-
ent took part in the perturbation analysis experiment.
our levels of discrepancies were introduced. To deter-
ine the amount of discrepancy to be introduced we con-

idered the performance of the particular subject in the
onsistent-cues experiment such that the maximum per-
urbation corresponded to approximately 80%–83% cor-

obtained for texture only (solid gray curve for the fitted function,
les for data) and texture and haptic cues (dashed black curve for
horizontal axis represents slant in degrees and the vertical axis
s more slanted than the standard. Standards are indicated with
e size of the data points is proportional to the number of trials
nation
triang
ot, the
eived a
als. Th
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ect for the best condition observed for that subject in the
onsistent-cues experiment. For example, for subject TV
nd a standard of 40 deg, a maximum discrepancy of
deg was taken, considering her performance for texture

nly (texture circles; see Figs. 1 and 2). One slant level
as tested per subject; we selected the one in which the
ifferences in performance elicited by the texture types
ere larger. Typically 500 trials were collected per psy-

hometric function.

. Results
n Fig. 4 we show an example of the effect of the pertur-
ation analysis and how the slope of the change of the
SEs defines the weight for a particular cue.
To estimate the weights of the cues we first fitted a

amily of parallel psychometric functions (“common
odel”) for all the (“individual”) data sets obtained for

ach observer for a perturbed cue, including the corre-
ponding data set from the consistent-cues experiment
see Wichmann14 for further details). Given the linearity
f the weak-fusion model—and the small perturbations
ntroduced that should make the cue-combination mecha-
ism operate in its linear range—the psychometric func-
ions should be parallel, and our analysis did indeed show
hat: With the exception of the data of subject AO, the
ast majority of the data sets (67 of 72) could be fitted sat-

ig. 3. Measured and predicted thresholds for slant discrimina
exture types for all five subjects. The vertical axes contain the
orizontal axes. Error bars represent 68% confidence intervals es
he stimulus judged 84% of the trials as more slanted and the P
sfactorily to their respective common model. [The com-
on models obtained for AO’s data failed in our tests of

oodness of fit even when only two data sets were consid-
red for each perturbed cue. The failure of the parallelism
ould be explained by the robust-estimator effect. How-
ver, considering that two individual data sets of the per-
urbation analysis (0.75 deg difference) represent a per-
urbation level of less than 70% correct in her best
ondition in the consistent-cues experiment and 55% cor-
ect for her worst performance in that experiment, we
hink it unlikely that in such conditions the cues were so
ighly discrepant that the robust estimator effect was
resent. An alternative explanation is the effect of the
lant level in the discrimination performance. This effect
s such that the more slanted the plane, the easier the dis-
rimination and the steeper the psychometric function.8,15

e have implicitly assumed that for the amount of per-
urbation we can dismiss this effect and assume parallel-
sm between the psychometric functions. Such assump-
ion seems justified by observing the results for the other
ubjects. However, AO’s data show that she is highly sen-
itive to change of slant (note her thresholds in the
onsistent-cues experiment and the small confidence in-
ervals obtained for her data in this experiment). Then
he “accelerating” performance for increasing slants
ight be observed for her even for small changes of slant,

ith haptic and texture information provided by three different
olds in degrees on a log scale, and the texture types are on the
d by bootstrap. Thresholds are defined as the difference between
ig. 3 continued next page.)
tion w
thresh
timate
SE. (F



p
t
v
t
d

v
w
c
t
a

w
e
t
p
s
F
t
r
a
t
s

806 J. Opt. Soc. Am. A/Vol. 22, No. 5 /May 2005 Rosas et al.
roducing the failure of the parallelism. We opt to report
he weights estimated for her data by using all the indi-
idual data sets obtained with the perturbation analysis,
hough they might represent a different mechanism than
o the data observed for the other subjects.]
After determining the common model and the indi-

idual data sets consistent with the parallel hypothesis,
e refitted the data sets, fixing their slope to that of the

ommon model. From the new fits we obtained the PSEs
o estimate the change of weight (see Fig. 5). We estimate

straight line connecting the PSEs by minimizing the

Fig. 3.
eighted least-squared error of the line fit, weighting
ach PSE point by its bootstrap standard deviation. To ob-
ain normalized weights, we constrain the minimization
rocess such that the weights for texture and haptic
hould be positive and add up to unity. As an example, in
ig. 5 we show the considered PSEs and the estimation of
he weights for one subject. In Table 1 we summarize the
esults of weights for the texture cue for all subjects. We
lso include the weights predicted by the statistically op-
imal cue-combination model using the thresholds mea-
ured in experiment 1:

inued).
(Cont
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vt
p =

th
2

tt
2 + th

2 . s3d

To assess the variability of the weight estimation, we
omputed the linear fit 1000 times using samples of the
ull distributions of bootstrap values of the PSEs obtained
ith Psignifit. To obtain a measurement of goodness of fit

f the constrained straight line, we computed the mean of
he normalized residuals of the linear fit over the full dis-
ribution of 1999 values for the PSEs obtained from Psig-
ifit. In Table 1 we show the standard deviation of the
000 estimated values for the weights and the mean
alue of the normalized residuals.

We observe that for three of the subjects the weight for
exture cue svtd diminishes as the texture type is less re-
iable for the task, following the prediction of a reliability-
ensitive cue combination (note that in the rank order for
K, leopard skin was a better texture for the task than

ircles, while the reverse is in general the case for the
ther subjects as well as the rank order reported by Rosas
t al.8). However, the weights do not change as predicted
y the unbiased-minimum-variance estimator model svt8

p d.
n general, the weight given to the texture cue by the sub-
ects is smaller than that predicted svt

pd with the excep-
ion of subject AO, whose data seem consistent with vi-
ual capture.

ig. 4. Example of the effect of the perturbation analysis for subj
y the texture cue while the haptic cue was depicting 40 deg. Top
as fixed at 40 deg slant. Bottom, PSEs obtained from the psy

quare-root linear fit) represents the weight given to the pertur
nalogous to, for example, Fig. 7 of Landy et al.4
. DISCUSSION AND CONCLUSIONS
e have studied the problem of cue combination for depth

erception using a slant-discrimination task. We were in-
erested in testing predictions of the class of models that
ropose a weighted average as the cue-combination rule,
ith weights assigned to the cues according to the reli-
bility of the sources of information. We introduced a ma-
ipulation of the reliability of the texture cue to slant that
onsists of using different texture types known to elicit
ifferent performance in slant discrimination.8 A particu-
ar formulation of the weighted-average model predicts a
erformance consistent with a minimum-variance
stimator.5 We tested this model with a consistent-cues
xperiment and obtained results that do not support such
cue-combination rule in more than 80% of our data. A

ess strict prediction is that the weight of the texture cue
iminishes for less reliable texture types. By performing a
erturbation analysis experiment we estimated the
eights for texture and haptic cues, observing a behavior
enerally consistent with such prediction. In short, our
ata suggest that the visual system is sensitive to the re-
iability of cues to depth, although the weights (represent-
ng the influence of a cue in the percept) are not statisti-
ally optimal in the sense of constructing an unbiased-
inimum-variance estimator of depth. Alternatively, of

ourse, there remains the possibility that subjects at-

. Top left, effect of introducing a discrepancy in the slant depicted
reverse, that is, perturbing the haptic cue while the texture cue

tric functions of the top row. The slope (obtained by weighted-
e. Error bars represent 95% confidence intervals. This figure is
ect TV
right,

chome
bed cu
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empted to combine cues optimally but did not have an ac-
urate estimate of the variance of the individual cues.

A number of hypotheses, not mutually exclusive, might
xplain the failure of the statistically optimal cue combi-
ation in our case. First, the task used by Ernst and
anks5 was to discriminate the height of an object by
rasping it, while our subjects used one finger to touch
nd freely explore a slanted plane. This difference in task
nduces potentially different dynamics of the combination
f cues. In the study by Ernst and Banks5 the subjects ac-
uired the full haptic percept faster than in our study, be-
ause our subjects had to explore the plane (in 1250 ms)
o obtain the haptic-based information of slant. However,
hat to predict from this observation is not straightfor-
ard, because it would, at least, depend on the moment at
hich the decision is made by the observers: An “early”
ecision would weaken the haptic cue given that for our

ig. 5. Estimated weights as the slope of change in the PSE giv
eft column, perturbed texture; right column, perturbed haptic; o
btained by bootstrap.
ubjects the haptic information was acquired over time.
hat is, however, inconsistent with our data, as most of
he measured haptic weights are larger than predicted
rom the optimal model. A “later” decision, in which the
aptic cue captures the combination would predict low
exture weights, something that we find for three of four
ubjects, but it is not consistent with the data of subject
O (but see remark about subject AO’s data above) and is
artially inconsistent with the data of subject PR. Clearly,
tudying the temporal dynamics of the cue-combination
rocess is an important future challenge for cue-
ombination research.

Another difference between the studies is the type of vi-
ual cues used: While disparity can provide metric infor-
ation about depth given knowledge of the viewing

istance,4 this is not the case for the texture cue. It is thus
ot inconceivable that (precise) metric information may

hange in the slant depicted by the perturbed cue for subject TV:
ure type per row. Error bars represent 95% confidence intervals
en a c
ne text
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ermit optimal cue combination, whereas we do not ob-
erve optimal cue combination for the nonmetric slant-
rom-texture and haptic cues. Knill and Saunders16 stud-
ed slant discrimination based on texture and horizontal
isparity information. Though they state that “on aver-
ge, subjects appear to weight the two cues optimally” (p.
551), they could not test the optimal cue combination for
heir subjects individually because of the large uncer-
ainty in the threshold estimates derived from their data
p. 2549).

We can thus state a number of differences between the
tudies that point to factors that may be necessary to pro-
uce the conditions in which an optimal combination of
ues is observed. Oruç et al.17 studied linear perspective
nd texture gradients in a slant-judgement task and
ound evidence of optimal cue combination, optimal com-
ination of correlated cues, and suboptimal cue combina-
ion. Those results and the results reported here suggest
hat optimal combination is only one possibility, but cer-
ainly not the combination rule under all conditions. Fur-
hermore, an optimal cue combination requires that the
bservers be able to estimate or represent accurately
even on a trial-by-trial basis) the underlying variance of
he available cues. An open question is how the visual sys-
em would implement a mechanism capable of obtaining
uch information for a wide range of tasks and stimuli.

Our results support a weaker mechanism that does not
epresent the exact variance of the cues for every possible
ase (though it might match the optimal combination in
ome cases). Such mechanism appears able to rank order
pproximately the reliability of a set of visual cues and
onstruct a depth percept in a manner consistent with the
eak-fusion model.

Table 1. Measured and Predicted Weights for the
Texture Cue

ubject/
ypes of
ue

vt

Mean
Standard

Deviationa
Normalized
Residuala vt

p

K
Circles 0.03 0.04 1.12 0.45
Leopard 0.08 0.06 1.32 0.73
Perlin noise 0.00 0.00 1.05 0.11

R
Circles 0.80 0.04 1.46 0.85
Leopard 0.56 0.06 0.99 0.75
Perlin noise 0.53 0.08 0.80 0.56

V
Circles 0.45 0.06 0.96 0.92
Leopard 0.33 0.06 0.91 0.83
Perlin noise 0.04 0.06 0.84 0.70

O
Circles 1.00 0.00 0.89
Leopard 1.00 0.00 0.89
Perlin noise 1.00 0.00 0.32

The standard deviations of the measured weights were computed by bootstra
onstrained linear function, and the residualssin standard deviation unitsd were com
uted by using the distribution of bootstrap values of the PSEs.sWe show only th
eights for the texture cue because the texture and haptic weights add up tod
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