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Texture and haptic cues in slant discrimination:
reliability-based cue weighting
without statistically optimal cue combination
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A number of models of depth—cue combination suggest that the final depth percept results from a weighted
average of independent depth estimates based on the different cues available. The weight of each cue in such
an average is thought to depend on the reliability of each cue. In principle, such a depth estimation could be
statistically optimal in the sense of producing the minimum-variance unbiased estimator that can be con-
structed from the available information. Here we test such models by using visual and haptic depth informa-
tion. Different texture types produce differences in slant-discrimination performance, thus providing a means
for testing a reliability-sensitive cue-combination model with texture as one of the cues to slant. Our results
show that the weights for the cues were generally sensitive to their reliability but fell short of statistically
optimal combination—we find reliability-based reweighting but not statistically optimal cue combination.
© 2005 Optical Society of America
OCIS codes: 330.4060, 330.5510, 330.6100, 330.7310.
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1. INTRODUCTION

In sensor fusion it is typically assumed that the different
sources of information relative to the variable of interest
are combined systematically to obtain an estimate of the
variable. Clark and Yuille! classified the combination
rules as belonging to the class of either weak-fusion or
strong-fusion models. In weak fusion the data coming
from the sensors are assumed to be independent, and they
are linearly combined to obtain a single estimate. In
strong fusion the “modules” processing the input data
from the sensors are not independent; that is, the esti-
mates from each module are not independent, and the fu-
sion mechanism might be nonlinear.

In vision science the currently most popular models for
depth perception are weak-fusion models, partly because
strong fusion is difficult to characterize.? In weak fusion
for depth perception the final depth estimate results from
a weighted average of the independent depth estimates
obtained from each source of information or cue, such as
disparity, texture, or motion-parallax.375 A more complex
model than weak fusion is the modified weak-fusion
model.* In this model a specific type of interaction be-
tween cues promote them “to be on equal footing [so that]
the values obtained from them are commensurate” (Ref.
4, p. 392). Except for this interaction, called promotion,
cues are assumed to be independent. In this paper we will
thus not make a distinction between weak fusion and
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modified weak fusion. In these models the weights are de-
termined by the reliability of the corresponding cue: A
more reliable cue should have a larger weight in the com-
bined estimate.*® In effect they are reliability-based
weighted-average models. Young et al.® reported evidence
for a reliability-based weighting of cues in shape from tex-
ture and motion, the kinetic depth effect. The cues were
made less reliable by either randomly changing the shape
of the texel or jittering the otherwise smooth motion of a
cylinder shape. Goodale et al.” trained gerbils to jump
from one platform to another. They reported that a de-
crease in the size of the landing platform induced the ger-
bils to increase the number of their vertical head move-
ments. The authors interpret this behavior as a
compensation for the loss of information from the looming
of the landing surface. To estimate the weights of cues
empirically Young et al.® proposed a technique they
named perturbation analysis in which a small discrep-
ancy is introduced in the depth depicted by one of the
cues. The larger the change in the depth percept induced
by the perturbation, the larger the influence of the cue (its
weight). It is important not to introduce too-large pertur-
bations, as the visual system is assumed to use a robust
weighting rule, that is, to ignore or at least nonlinearly
reweight cues if they are too discrepant from the other
cues.

Assuming independence of cues and independent nor-
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mally distributed internal noise for each cue, the
minimum-variance unbiased estimator of depth is a
weighted average. The weights in this average are propor-
tional to the inverse of the variances associated with the
cues.*® Ernst and Banks® formulated depth—cue combina-
tion as a maximum-likelihood estimator (MLE) relating
discrimination thresholds to the variance of the underly-
ing estimator and assuming cumulative Gaussian psycho-
metric functions. From these assumptions they predicted
that the resulting variance of the combined cues estima-
tor should be smaller than the variance corresponding to
each cue alone, if observers combined haptic and visual
information in a “statistically optimal” fashion in the
MLE sense (in the present article we will use the term
“optimal” in this sense). By asking subjects to discrimi-
nate the height of a bar with haptic and visual informa-
tion (binocular disparity) they collected data supporting
statistically optimal cue combination. To change the reli-
ability of the visual cue, the authors changed the binocu-
lar disparity of the random dots used in the stimulus.

In a recent paper Rosas et al.® showed that different
texture types elicit different performance in a slant-
discrimination task. This effect was observed by measur-
ing the discrimination performance of the slant of a tex-
tured plane at different slant levels. An example of this
effect is illustrated in Fig. 1. The obtained systematic
rank-order based on performance provides a way of test-
ing the reliability-based weighting: In cue combination
the weight assigned to the texture cue should be larger
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Fig. 1. Effect of texture type on slant discrimination. Top, the
psychometric functions are significantly different for three tex-
ture types (error bars represent 68% confidence intervals). Bot-
tom, texture patterns used to obtain the data. Left to
right: circles, leopard skinlike, and Perlin noise textures. For
this subject (TV) the task was easier when the circle texture was
mapped onto the slanted planes while discriminating slant near
40 deg (the standard, depicted as a solid vertical line), reflected
in the steepest psychometric function. Her worst performance
was obtained with Perlin noise.
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when a texture type that allows good slant-from-texture
performance is mapped on the plane. Furthermore, if the
more strict “statistically optimal” combination rule holds,
the measured psychometric functions for the texture-only
condition should be related to the weight for the texture
cue [see Eq. (3) below]. The aim of this paper is to test
both of these propositions using a slant-discrimination
task.

In Section 2 we describe a slant-discrimination experi-
ment in which the texture and haptic cues were depicting
the same slant. This experiment allowed us to test the
prediction of an unbiased-minimum-variance-estimate
(optimal) model for the change in slant-discrimination
thresholds when both cues are combined. In addition, the
results were used to determine a range of discrepancies
between cues when conducting the perturbation analysis
experiment described in Section 3. The perturbation
analysis experiment allowed us to determine empirically
the weights assigned to each cue.

2. EXPERIMENT 1: SLANT
DISCRIMINATION WITH CONSISTENT
CUES

A. Stimuli

The stimuli used in this experiment consisted of slanted
planes onto which different texture types were mapped.
The (virtual) planes could be touched by the subjects with
a PHANToM force-feedback device (SensAble Technolo-
gies) attached to their index finger. This device simulates
the forces corresponding to the given plane creating in the
observer a compelling sensation of a real slanted plane.
The graphic rendering (perspective projection) and tex-
ture mapping were done with the OpenGL library. The
setup was carefully calibrated such that haptic and
graphic planes were aligned.

The texture types used in all our experiments were a
subset of the ones described and tested by Rosas et al.’ We
used three different textures: a texture composed of
circles, which tends to allow the best slant-discrimination
performance; a leopard skinlike pattern;9 and “Perlin” (co-
herent) noise™ (see Fig. 1).

B. Methods

The experimental setup was similar to the one used by
Ernst and Banks®. The image from a SONY GDM 500
21-in. monitor was reflected on a mirror. The image sub-
tended approximately 10 deg of visual angle and was mo-
nocularly viewed through an aperture of 2.6-cm diameter.
The subject’s position was controlled by means of a head
and chin rest located approximately 50 cm from the im-
age. The subjects used an eye patch to obtain monocular
viewing. The aperture was aligned such that the subject’s
open eye was looking through the center of the viewing
aperture.

Five subjects participated in standard temporal two-
alternative forced-choice experiments. On every trial, one
of the three conditions to be tested (texture only, haptic
only, and texture and haptic cues) was selected randomly
and independently. For the texture-only condition, the
two images were shown sequentially for 1250 ms with a
ramp-in, maximum-contrast, ramp-out timing of
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125 ms—1000 ms—125 ms to avoid afterimages. The in-
terstimulus interval was 400 ms. No haptic object was
available to the subjects in this condition.

For the trials in which the haptic cue was present (ei-
ther a haptic-only or a haptic-and-texture trial), a small
green sphere was shown on the center of the image
(matching the center of the plane such that this position
was the same throughout the experiment), indicating to
the subject that she or he had to touch the surface in or-
der to start the trial. Once the subject touched the sur-
face, the green sphere disappeared from the screen and
the graphic object was ramped in and out as described be-
fore. If no texture was to be shown in such trial, a gray
field was projected onto the plane. Subjects were in-
structed to explore the plane freely during the trial. After
the 1250 ms corresponding to the stimulus presentation
time, both the graphic and the haptic objects disappeared.
Subjects had to respond which interval contained the
more slanted plane by pressing one of two (virtual) but-
tons, that were displayed on the screen after the stimuli
had disappeared; the subjects’ finger was not visible to the
subject during the experiment. No feedback was provided.

Slant discrimination was tested for each of the three
texture types described above against two comparison
standards: 27 and 40 deg away from a horizontal plane,
with the top part tilted in depth away from the viewer.

A combination of adaptive and constant-stimuli proce-
dures was used to collect data: The adaptive procedure11
was used to obtain a crude first estimation of the psycho-
metric function. From this estimate, some critical stimuli
values were extracted to carry out a constant-stimuli pro-
cedure. The final estimation of the psychometric functions
was made with the combined data collected with both pro-
cedures, typically between 500 and 700 trials for each
psychometric function. All the fits were forced to cross
chance performance (50% correct in two-alternative
forced-choice) at the slant level of the standard. The fits
were obtained with the Psignifit Toolbox, which imple-
ments the constrained-MLE method described by Wich-
mann and Hill,lz’13 with a cumulative Gaussian function
as underlying shape. The psychometric functions were
obtained by fitting the general expression

lﬁ(%a’,,&)\):}\*’(1—)\)F(3C,01,,3), (1)

where F' represents the underlying function with range
between 0 and 1, @ and B the parameters of location and
scale of the psychometric function, and \ the lapse rate.
Wichmann and Hill'? showed that level-independent
lapses (e.g., eye blinks, wrong-button responses, etc.) can
result in serious estimation errors in fitting psychometric
functions (with MLE methods). Introducing \ as a (highly
constrained) free parameter during the fit cures this bias
problem. Thus not all psychometric functions asymptote
at 1.0 on the data sets fitted (see Fig. 2). When obtaining
discrimination thresholds from our fits [see Eq. (2)], we
used the underlying function F, that is, the underlying
performance of subjects when lapse rate is zero.

C. Results

In Fig. 2 we show typical examples of the psychometric
functions obtained. The horizontal axis shows the slant in
degrees and the vertical axis shows the fraction of trials
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in which the comparison stimulus was perceived as more
slanted than the standard (the value of the standard is
indicated with a vertical solid line). Error bars correspond
to 68% confidence intervals obtained from a parametric
bootstrap.13 Different types of curves and symbols
represent the performance for the different
conditions: texture only, haptic only, and texture and
haptic cues. The unbiased-minimum-variance-estimator
model predicts that the psychometric functions for both
cues together should be steeper than the psychometric
functions obtained from either cue by itself, because the
underlying estimator should have less variance than the
estimator for single cues. In the examples shown in Fig. 2
only subject PR’s data seem to be consistent with the op-
timal model.

According to the unbiased-minimum-variance model
the following relation holds for single-cue discrimination
thresholds and combined-cues thresholds (from Eq. (7) in
Ref. 5):

24

7= 2)

where 7, stands for the discrimination threshold when
texture was the only available cue, 7, the discrimination
threshold for haptic only, and 7;,;when both cues were
present in the stimulus. Here the thresholds are defined
as the difference between the comparison stimulus judged
more slanted 84% of the time and the point of subjective
equality (PSE). It is important to note that when compar-
ing the empirical results for combined cues with the pre-
dictions obtained with Eq. (2), we assume that the thresh-
olds measured in the single-cue condition are
representative of the reliability of the cue in the
combined-cues condition. This critical assumption is not
unique to our experimental design but is standard in all
cue-combination research. As described in Subsection 2.B
we did, however, attempt to discourage subjects from us-
ing different strategies in the single-cue and combined-
cue conditions by randomly interleaving all conditions
within a block of trials.

In Fig. 3 we depict the measured thresholds for each
cue independently (open symbols) and for both cues com-
bined (filled circles). In addition Fig. 3 shows the thresh-
olds predicted by the statistically optimal model as filled
squares. There are two plots per subject displaying the
data for both standards tested. The vertical axes contain
the thresholds on a log scale, while the texture type tested
is on the horizontal axes. Note that for subject AO at stan-
dard 40 deg, the vertical scale is different from the other
plots, because of her small thresholds. The error bars rep-
resent 68% confidence intervals estimated by a paramet-
ric bootstrap routine. By visual inspection of the overlap
of the confidence intervals we see that in general our re-
sults are not consistent with the unbiased-minimum-
variance model: Ignoring the six cases in which the pre-
diction of the statistically optimal model cannot be
distinguished from the performance based on a single cue,
we observe 3 cases of optimal performance (subject PR,
circles at 40 deg and Perlin noise at both standards) and
21 cases of suboptimal performance. The cases of subop-
timal performance do not follow a single rule of
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Fig. 2. Examples of the psychometric functions for slant discrimination obtained for texture only (solid gray curve for the fitted function,
gray squares for data), haptic only (solid black curve for fit, black triangles for data) and texture and haptic cues (dashed black curve for
fit, black circles for data) for subjects NK, PR, and TV. On each plot, the horizontal axis represents slant in degrees and the vertical axis
shows performance as the fraction of the comparison stimuli perceived as more slanted than the standard. Standards are indicated with
a vertical solid line. Error bars represent 68% confidence intervals. The size of the data points is proportional to the number of trials

recorded.

combination: There are cases of performance between
the thresholds for each cue. This is particularly puzzling
since the observers could have done better by simply ig-
noring the weak cue. Also there are eight cases consistent
with a veto rule in which subjects “followed” one of the
two cues instead of combining them when both were
present. In five of these cases they selected the best cue
for the task.

Although we can conclude from these data that the
weights were not statistically optimal, we cannot dismiss
the reliability-based weighting in general. In Section 3 we
describe a perturbation analysis experiment that we con-
ducted in order to obtain the weights for both cues. This
allows us to test whether the weights change following
the reliability of the texture cue, albeit not statistically
optimal.

3. EXPERIMENT 2: PERTURBATION

ANALYSIS

A. Stimuli and Methods

The stimuli and methods used for this experiment were
similar to the ones described for the previous experiment.
The only difference was that a small discrepancy was in-
troduced in the slant depicted by each cue in the stimuli

to allow the estimation of weights for each cue according
to perturbation analysis. Perturbation analysis was intro-
duced by Young et alb as a methodology to estimate the
weight of a depth cue within the framework of the weak-
fusion model. In this model, cue combination is proposed
to be a statistically robust mechanism for parameter esti-
mation. The robustness implies that the depth estimates
derived from every cue are integrated linearly only when
they do not differ substantially. If the discrepancy in-
creases, then the influence of the most discrepant cue on
the fused percept decreases, and “it should be no surprise
that [the cues] interact in complex ways.” (Ref. 4, p. 395.)
If the discrepancy is small, the weight of the perturbed
cue is derived from the amount of change in the percept
given the amount of perturbation (see Fig. 4). Thus if we
are interested in studying the visual system under nor-
mal or “ecological” conditions, we should avoid large con-
flicts between cues.

Four subjects who participated in the previous experi-
ment took part in the perturbation analysis experiment.
Four levels of discrepancies were introduced. To deter-
mine the amount of discrepancy to be introduced we con-
sidered the performance of the particular subject in the
consistent-cues experiment such that the maximum per-
turbation corresponded to approximately 80%—-83% cor-
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rect for the best condition observed for that subject in the
consistent-cues experiment. For example, for subject TV
and a standard of 40 deg, a maximum discrepancy of
2 deg was taken, considering her performance for texture
only (texture circles; see Figs. 1 and 2). One slant level
was tested per subject; we selected the one in which the
differences in performance elicited by the texture types
were larger. Typically 500 trials were collected per psy-
chometric function.

B. Results

In Fig. 4 we show an example of the effect of the pertur-
bation analysis and how the slope of the change of the
PSEs defines the weight for a particular cue.

To estimate the weights of the cues we first fitted a
family of parallel psychometric functions (“common
model”) for all the (“individual”) data sets obtained for
each observer for a perturbed cue, including the corre-
sponding data set from the consistent-cues experiment
(see Wichmann!* for further details). Given the linearity
of the weak-fusion model—and the small perturbations
introduced that should make the cue-combination mecha-
nism operate in its linear range—the psychometric func-
tions should be parallel, and our analysis did indeed show
that: With the exception of the data of subject AO, the
vast majority of the data sets (67 of 72) could be fitted sat-
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isfactorily to their respective common model. [The com-
mon models obtained for AO’s data failed in our tests of
goodness of fit even when only two data sets were consid-
ered for each perturbed cue. The failure of the parallelism
could be explained by the robust-estimator effect. How-
ever, considering that two individual data sets of the per-
turbation analysis (0.75 deg difference) represent a per-
turbation level of less than 70% correct in her best
condition in the consistent-cues experiment and 55% cor-
rect for her worst performance in that experiment, we
think it unlikely that in such conditions the cues were so
highly discrepant that the robust estimator effect was
present. An alternative explanation is the effect of the
slant level in the discrimination performance. This effect
is such that the more slanted the plane, the easier the dis-
crimination and the steeper the psychometric function.®®
We have implicitly assumed that for the amount of per-
turbation we can dismiss this effect and assume parallel-
ism between the psychometric functions. Such assump-
tion seems justified by observing the results for the other
subjects. However, AO’s data show that she is highly sen-
sitive to change of slant (note her thresholds in the
consistent-cues experiment and the small confidence in-
tervals obtained for her data in this experiment). Then
the “accelerating” performance for increasing slants
might be observed for her even for small changes of slant,
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Fig. 3.

Measured and predicted thresholds for slant discrimination with haptic and texture information provided by three different

texture types for all five subjects. The vertical axes contain the thresholds in degrees on a log scale, and the texture types are on the
horizontal axes. Error bars represent 68% confidence intervals estimated by bootstrap. Thresholds are defined as the difference between
the stimulus judged 84% of the trials as more slanted and the PSE. (Fig. 3 continued next page.)
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producing the failure of the parallelism. We opt to report
the weights estimated for her data by using all the indi-
vidual data sets obtained with the perturbation analysis,
though they might represent a different mechanism than
do the data observed for the other subjects.]

After determining the common model and the indi-
vidual data sets consistent with the parallel hypothesis,
we refitted the data sets, fixing their slope to that of the
common model. From the new fits we obtained the PSEs
to estimate the change of weight (see Fig. 5). We estimate
a straight line connecting the PSEs by minimizing the
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weighted least-squared error of the line fit, weighting
each PSE point by its bootstrap standard deviation. To ob-
tain normalized weights, we constrain the minimization
process such that the weights for texture and haptic
should be positive and add up to unity. As an example, in
Fig. 5 we show the considered PSEs and the estimation of
the weights for one subject. In Table 1 we summarize the
results of weights for the texture cue for all subjects. We
also include the weights predicted by the statistically op-
timal cue-combination model using the thresholds mea-
sured in experiment 1:
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To assess the variability of the weight estimation, we
computed the linear fit 1000 times using samples of the
full distributions of bootstrap values of the PSEs obtained
with Psignifit. To obtain a measurement of goodness of fit
of the constrained straight line, we computed the mean of
the normalized residuals of the linear fit over the full dis-
tribution of 1999 values for the PSEs obtained from Psig-
nifit. In Table 1 we show the standard deviation of the
1000 estimated values for the weights and the mean
value of the normalized residuals.

We observe that for three of the subjects the weight for
texture cue (w;) diminishes as the texture type is less re-
liable for the task, following the prediction of a reliability-
sensitive cue combination (note that in the rank order for
NK, leopard skin was a better texture for the task than
circles, while the reverse is in general the case for the
other subjects as well as the rank order reported by Rosas
et al.®). However, the weights do not change as predicted
by the unbiased-minimum-variance estimator model (wf,).
In general, the weight given to the texture cue by the sub-
jects is smaller than that predicted («?) with the excep-
tion of subject AO, whose data seem consistent with vi-
sual capture.

of . (3)

o

4. DISCUSSION AND CONCLUSIONS

We have studied the problem of cue combination for depth
perception using a slant-discrimination task. We were in-
terested in testing predictions of the class of models that
propose a weighted average as the cue-combination rule,
with weights assigned to the cues according to the reli-
ability of the sources of information. We introduced a ma-
nipulation of the reliability of the texture cue to slant that
consists of using different texture types known to elicit
different performance in slant discrimination.® A particu-
lar formulation of the weighted-average model predicts a
performance consistent with a minimum-variance
estimator.” We tested this model with a consistent-cues
experiment and obtained results that do not support such
a cue-combination rule in more than 80% of our data. A
less strict prediction is that the weight of the texture cue
diminishes for less reliable texture types. By performing a
perturbation analysis experiment we estimated the
weights for texture and haptic cues, observing a behavior
generally consistent with such prediction. In short, our
data suggest that the visual system is sensitive to the re-
liability of cues to depth, although the weights (represent-
ing the influence of a cue in the percept) are not statisti-
cally optimal in the sense of constructing an unbiased-
minimum-variance estimator of depth. Alternatively, of
course, there remains the possibility that subjects at-
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tempted to combine cues optimally but did not have an ac-
curate estimate of the variance of the individual cues.

A number of hypotheses, not mutually exclusive, might
explain the failure of the statistically optimal cue combi-
nation in our case. First, the task used by Ernst and
Banks® was to discriminate the height of an object by
grasping it, while our subjects used one finger to touch
and freely explore a slanted plane. This difference in task
induces potentially different dynamics of the combination
of cues. In the study by Ernst and Banks® the subjects ac-
quired the full haptic percept faster than in our study, be-
cause our subjects had to explore the plane (in 1250 ms)
to obtain the haptic-based information of slant. However,
what to predict from this observation is not straightfor-
ward, because it would, at least, depend on the moment at
which the decision is made by the observers: An “early”
decision would weaken the haptic cue given that for our
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subjects the haptic information was acquired over time.
That is, however, inconsistent with our data, as most of
the measured haptic weights are larger than predicted
from the optimal model. A “later” decision, in which the
haptic cue captures the combination would predict low
texture weights, something that we find for three of four
subjects, but it is not consistent with the data of subject
AO (but see remark about subject AO’s data above) and is
partially inconsistent with the data of subject PR. Clearly,
studying the temporal dynamics of the cue-combination
process is an important future challenge for -cue-
combination research.

Another difference between the studies is the type of vi-
sual cues used: While disparity can provide metric infor-
mation about depth given knowledge of the viewing
distance,4 this is not the case for the texture cue. It is thus
not inconceivable that (precise) metric information may
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Fig. 5. Estimated weights as the slope of change in the PSE given a change in the slant depicted by the perturbed cue for subject TV:
left column, perturbed texture; right column, perturbed haptic; one texture type per row. Error bars represent 95% confidence intervals

obtained by bootstrap.



Rosas et al.

Table 1. Measured and Predicted Weights for the
Texture Cue

Wy
Subject/
Types of Standard Normalized
Cue Mean  Deviation® Residual® of
NK
Circles 0.03 0.04 1.12 0.45
Leopard 0.08 0.06 1.32 0.73
Perlin noise 0.00 0.00 1.05 0.11
PR
Circles 0.80 0.04 1.46 0.85
Leopard 0.56 0.06 0.99 0.75
Perlin noise 0.53 0.08 0.80 0.56
TV
Circles 0.45 0.06 0.96 0.92
Leopard 0.33 0.06 0.91 0.83
Perlin noise 0.04 0.06 0.84 0.70
AO
Circles 1.00 0.00 0.89
Leopard 1.00 0.00 0.89
Perlin noise 1.00 0.00 0.32

*The standard deviations of the measured weights were computed by bootstrapping a

constrained linear function, and the residuatsstandard deviation unitsvere com-
puted by using the distribution of bootstrap values of the PBBs. show only the

weights for the texture cue because the texture and haptic weights add up tb unity.

permit optimal cue combination, whereas we do not ob-
serve optimal cue combination for the nonmetric slant-
from-texture and haptic cues. Knill and Saunders'® stud-
ied slant discrimination based on texture and horizontal
disparity information. Though they state that “on aver-
age, subjects appear to weight the two cues optimally” (p.
2551), they could not test the optimal cue combination for
their subjects individually because of the large uncer-
tainty in the threshold estimates derived from their data
(p. 2549).

We can thus state a number of differences between the
studies that point to factors that may be necessary to pro-
duce the conditions in which an optimal combination of
cues is observed. Orug et al.'” studied linear perspective
and texture gradients in a slant-judgement task and
found evidence of optimal cue combination, optimal com-
bination of correlated cues, and suboptimal cue combina-
tion. Those results and the results reported here suggest
that optimal combination is only one possibility, but cer-
tainly not the combination rule under all conditions. Fur-
thermore, an optimal cue combination requires that the
observers be able to estimate or represent accurately
(even on a trial-by-trial basis) the underlying variance of
the available cues. An open question is how the visual sys-
tem would implement a mechanism capable of obtaining
such information for a wide range of tasks and stimuli.

Our results support a weaker mechanism that does not
represent the exact variance of the cues for every possible
case (though it might match the optimal combination in
some cases). Such mechanism appears able to rank order
approximately the reliability of a set of visual cues and
construct a depth percept in a manner consistent with the
weak-fusion model.
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