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Abstract—One way of image denoising is to project a noisy By considering both primal and dual problems at the same
image to the subspace of admissible images derived, for instancetime, one can construct effective and highly principled opti-
by PCA. However, a major drawback of this method is that 7015 such as interior point methods. Also, the optimality

all pixels are updated by the projection, even when only a few " L -
pixels are corrupted by noise or occlusion. We propose a new conditions enables us to predict important properties of the

method to identify the noisy pixels by¢;-norm penalization andto  Optimal solution before we actually solve it. In particular, we
update the identified pixels only. The identification and updating can explicitly specify the fraction of noisy pixels by means of
of noisy pixels are formulated asone linear program which can  the v-trick originally developed for SVMs [5] which was later
be efficiently solved. In particular, one can apply the v-trick applied to Boosting [6].

to directly specify the fraction of pixels to be reconstructed. . .
Moreover, we extend the linear program to be able to exploit In some cases the noisy pixels are not scattered over

prior knowledge that occlusions often appear in contiguous blocks the image (‘impulse noise”), but form a considerably large

(e.g. sunglasses on faces). The basic idea is to penalize boundargonnected region (“block noise”), e.g. face images occluded

points and interior points of the occluded area differently. We are by sunglasses. By using the prior knowledge that the noisy

also able to show thev-property for this extended LP leading 1o  pniyels form blocks, we should be able to improve the denoising
?h? z?xgrvé?'gﬁr'saggfg;ghgse' Experimental results demonstrate performance. Several ad-hoc methods have been proposed so

_ _ _ far, e.g. [4], but we obviously need a more systematic way. We

buLpoﬁr)éjJStE?:TiInrggg%rgegcrzrr]nsrg:?ncélory]’-tﬁglflUSIOn detection, ro- \yj|| show that a very simple modification of the linear program

' ' ' has the effect that we can control how block-shape-like the

identified and reconstructed region is. In the experimental

. INTRODUCTION section we will show impressive results on face images from

MAGE denoising is an important subfield of computetrhe MPI face data base corrupted by impulse and block noise.

vision, which has extensively been studied [1]-[4]. The aim [l. | MAGE DENOISING BY LINEAR PROGRAMMING
of image denoising is to restore the image corrupted by noisg gt {t;}7_, be the set of vectors iit", which have been

as close as possible to the original one. When one does Rgfived, for instance by principal component analysis. The
have any prior knowledge about the distribution of imagegnear manifold of admissible images is described as
the image is often denoised by simple smoothing, e.g. [1],

[3]. When one has a set of template images, it is preferable to T {t 't = iﬁ't' 8 e %}

project the noisy image to the linear manifold made by PCA, - LI

which is schematically illustrated in Fig. 1 (left). One can also =t

construct a nonlinear manifold, for instance by kernel PCAow we would like to denoise a noisy imagec RV . Let us
requiring additional computational costs [2]. The projectiodescribe the denoised image @asin order that the denoised
amounts to finding the closest point in the manifold accordinmage is similar to admissible imageg, should be close to
to some distance. Instead of using the standard Euclideghe manifold:

distance (i.e. the least squares projection), one can adopt a J

robust loss such as Huber’s loss as the distance, which often min dy (97:, Zﬂjtj) <e, 1)
gives a better result (robust projection, cf. [4]). However, a p j=1

major drawback of these p.roje.ction approache; is that Wheredl is a distance between two images. Also, we have to
pixels are updated by the projection. However, typically Only@onstrainac to be close tox, otherwise the denoised image

few pixels are corrupted by noise, thus non-noise pixels ShOngcomes completely independent from the original image:
best be left untouched.

This paper proposes a new denoising approach by linear da(Z, x) < €, (2)

programming, where th@ -norm regularizer is adopted for au_\c/yheredg is another distance. A number of denoising methods

tomatic identification of noisy pixels — only these are updatec.an be produced by choosing different distances and changing

The identification gnd updating of noisy plxgls are neatIP{OW to minimize the two competing objectives (1) and (2).
formulated as one linear program. The theoretical advantages

of linear programming lie in duality and optimality conditions i “projection methodse, is simply set to zero and; is
prog 9 y P y minimized with d, being set to the Euclidean distance or a
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Fig. 1. Comparison of projection methods (left) and our LP method (right).

sparse For this purposeds is chosen as thé,-norm, as it problem:
is well known that the/;-norm constraints produce sparse

N
solutions [6]. Also ford,, the/..-norm is especially interesting min L Z(a+ ta;)+ve (6)
as it leads to linear programming. The optimization problem is atBe N T
designed to minimize the weighted sum of the two distances: J
o ) tatof —an =3 fitn| <6 (7)
I;l’lélNHaHl+VH$+G*Z@%‘HOO- 3) j=1
j=1 af o, >0, n=1,...,N.

N .
where [[z]o = max; ||, [y = 32—, el and v is @ Here we used the well known fact that eithef or o is
constant to determine the sparseness. The denoised IMage) at the optimum.

is then calculated ag& = = + a. At the same time, we
have another solutiod} . 6;t; on the manifold as shown in .

; ; J p : . _»B. Thev-Trick
Fig. 1 (right). We call the former the “off-manifold solution

and the latter “on-manifold solution”. Here, we are mainly In the above optimization problem, the regularization con-
concerned with the off-manifold solution, because of thgtantv should be determined to control the fraction of updated

sparsity. pixels. Interestinglyy has an intuitive meaning as follows: Let
N, denote the number of nonzero elementsvirFurthermore
let N. be the number of “crucial pixels” which are not updated,
but the corresponding constraints (7) are met as equalities. If
one of these pixels is modified, then it will likely lead to a
different solution, while changing any of the othEr N, — N,
pixels locally does not change the optimal solution.
Proposition 1: Suppose the optimat is greater than0.
Then the number of nonzero elemerXs in the optimalc is
1) upper bounded by N, i.e. N, <vN and
2) lower bounded by N — N, i.e. N, > vN — N,.
Proof: Let Q4 be the set of indices of the active

Let us actually formulate (3) as a linear programming prob-
lem. The optimization problem (3) is equivalently transformed

as
N inequality constraints which are met by equality at the optimal
. 1 solution. Q@ 4 is divided into the two subset@ 4o and Qsp
AT n 4 . X !
crxn,clane N ; [ovn] + ve “) which correspond tex,, = 0 and «,, # 0, respectively. Also,

define @ as the complementary set §f4. For alln € Qy,

a, = 0. Thus,N, = |Qap| and N. = |Q4¢|. Let us prove
the first part by contradiction. Assum¥r < |Q4p| at the
optimal solution. Then suppose increasirgy an infinitesimal
wherev is a regularization parameter. Still, this problem is nggmounts > 0 from the optimal value, i.e¢ = ¢ + §. As we
linear programming because [of,,| in the objective function. relaxed the constraints (7), we can updateto minimize the
Next let us restatex as follows: objective function further. Since we do not need to change
zero «,'s, we need to consider the constraints@yp only.

For the constraints that,, + «,, — Z}Izl Bitjn = €, We can
Then (4) is rewritten as the following linear programmingonclude thaty,, < 0, because otherwise one can decrease

J
$n+an_2ﬁjtjn <€ n:1:7N7(5)

Jj=1

+

a=at—-a”, o,a, >0, n=1,...,N.



the objective by setting it to zero. Hence increasindpy (single inversion point The first score is computed as

0 leads to an increase af,, by the same amount. For the S” =N, +2N;.

other constraints that,, + a,, — Z'j]:l Bitjn = —€ an >0 — Let Ng“ be the number of pixelsa which satisfy:

and is decreased by. Therefore|a,| = |an| — 4. Now the (@) o, = 0 and there exists € G(n) such thaty,,, #
change in the objective function sums up%dgATP“; + vé. 0 (outer boundary pointor

As we assumedVy < |Qap|, the change is negative. It (b) a,, # 0 and there existsn € G(n) with a,,, = 0
means that one can still decrease the objective function, which (inner boundary point

contradicts the optimality assumption. Thus the first part is
proven asVv > |Q4p| = N,. For the second part, we assume
Nv > |Q4| and decrease By similar reasoning, the change
of the objective function ié%‘é — vd. By contradiction, we
have Nv < |Q 4], which is rewritten agV, > vN — N.. ®

The slack in the bound only comes from.. In practice
we usually observed small values &f.. We suspect that its
value is related ta/, the number of basis vectors.

Let Nj be the number of pixels with a, ., < 0 for at
least onem € G(n) (inversion poin). Then the second
score is computed aS* := N;7 + 2N/

The main difference between the two scores is 81atcounts
the length of the inneand outer boundary, whileS~ only
counts the outer boundary.

B. The Extended LP

I1l. DEALING WITH BLOCK NOISE The question is how we can introduce these definitions into

a linear program, which somehow penalizes these scores. As

we will show in the following proposition, it turns out that it
When the noise is clustered in blocks, this prior knowledge enough to penalize the differences between neighbaring

is considered to lead to an increased denoising performangg introduce a new set of variables (this) which account

So far we could only control the number of modified pixelfor these differences and which are linearly penalized. We

which corresponds to the area of reconstruction. In this sectiedntrol the contribution of the/’s with the one of thea’s

we also consider the length of the boundary of the identifigg) introducing a new parameter € (0,1) — if A = 0, then

pixels. For instance, consider the three occlusion pattemh® original LP is recovered:

in Figure 2. The pixel is white, when it is identified as N N

nmsy/qccluded and black _otherW|se. In the first case (Ieft)“th? min A Z " 1-A Z || + ve 8)

occlusion forms a block, in the second case the letters “|p3>0,a,¢20,3 N &~ N e~

and in the third case the pixels are randomly distributed. The

A. Preliminaries

. J
covered area is the same for all three cases. 2 + o, — Zﬁjtj,n <en=1,....N
We will now define two measures of how much an oc- o
lusion rnmismatcheghe block shape. It is rel
clusion patte smatcheghe block shape. It is related to (O — | < v for all m € G(n) )

the length of the boundary. Note that optimal “block” shapes
have shortest boundaries. (What will be optimal depends We will show in the experimental part that these novel con-
the metric.) The idea is to define a neighborhood relatigfiraints lead to substantial improvements for block noise. The
G(n) C {1,...,N} for every pixeln. We say that the pixel analysis of this linear program is considerably more difficult
m is in the neighborhood af, if m € G(n). We assumé& is  than of the previous one. However, we will show that the
symmetric. In our experiments;(n) was determined as thetrick still works in a generalized manner with some subtleties.
4-neighbors of pixeh. We will show in the following proposition that LP (8) trades-
We distinguish between two types of penalties: first, theff the areaV, with the penalty score§~ and S+:
ones which occur when a reconstructed pixel is a neighborProposition 2: Let N, the number of crucial pixels ani,,
of an untouched pixel (“boundary point”) and second, if ¢he number of updated pixels (as before). Assume the optimal
reconstructed pixel is neighbor of another such pixel, but thés greaterd. Then the following holds:

corrections are in different directions (“inversion point”, e.g. 1) The \-weighted average between area of the occlusion

a, > 0 anda,, < 0). We have two definitions for our scores, and scoreS— is not greater thaw N, i.e.
which we will later relate to the solution of our extended linear
program. (1=A)N,+AS™ <vN (10)

The differences between the two scofssand S are only 2) If A<
in subtle details in how to count boundary points and inversion
points:

— Let NV, be the number of pixels which satisfy:

ﬁIG\’ then the\-weighted average between area
of the occlusion and scoré* is not smaller thanv N
minus 2N, i.e.

(a) a,, =0 and there existsr € G(n) such thaty,, # (L= AN, +AST > vN — 2N, 11)
0 (outer boundary pointor where|G| := max,, |G(n)|
(b) a, # 0and forall m € G(n) holdsa;, =0 (single Note that the slackness in (11) again only comes from the
pixel changg number of crucial pointsV,. If A = 0, we recover proposition
Let V- be the number of pixela with o, 0., < 0 for 1. Note that the restrictioh < ﬁ‘g‘ only concerns the second

at least onen € G(n) anda, o, <0 for allm € G(n) part and and not the functioning of the LP in practice. It can
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Fig. 2. Three occlusion patterns with different degrees of having a block shape.

be made less restrictive, but this goes beyond the scope of #msl y,, = Z;-]:1 Bitjn. If A < ﬁ\GI then the following
paper. statements are true:

Proof: Let [¢*, a*,~*,3%] be the optimal solution of
(8). For the first statement consider increasingpy an in-
finitesimally small amoun® < 4, i.e. ¢ = ¢* 4+ 6. Then all an >0 = —Tp—antyn=c¢
active constraintgr,, + on, — 37, Bjt;..| < € are relaxed. A Proof: Supposey, < 0 andx, + a, — Y7 Bitjn =
feasible solutior(¢, &, 4, 3*) can be constructed as follows: ife — ¢ (0 > 0). Then we can increase,, by ¢ and obtain
o >0, thena, = o — ¢ and if o <0, thena,, = o +4. an equality. Consider the other constraints whegreappears:
Additionally, if o* = 0, thena,, = 0. Let us define thesign |an — am| < 7, for all m € G(n) and [ay, — an| < m

a, <0 = z,+ta, —y,=c¢€

differencebetweena,, and«,,, as for all m such thatn € G(m). In the worst case the change
) ) in «,, causes an increase of, by ¢ in |G| cases and an
s(an, am) = |sign(an) — sign(am)|; increase ofy,, by 4. The total change of the objective can
which can be 0,1 or 2. Then the following relation holds, therefore be upper bounded by(1 —A)d + (|G| +1)d. This
. } is negative if\ < ﬁ and leads to the contradiction. The
|Gy — G| — |ag, — ag, | = —ds(ag, ar,), (12) second statement can be shown using the same reasaming.
which can be verified by considering all the signs égyand __ We start by constructing a feasible solution. Lgi =
af,. A newn, is obtained as > j=1Btjn. If nis an updated point (i.ea;, # 0), then
) . an, = of + sign(ak)o. If it is a lower crucial point ,, +
Tn = Tn — mggf(ln)(ss(amam) af —y, = —€* and o, = 0), then we setq,, = —9, if it

] ) i is a upper crucial point ¢, + o —y, = ¢ and o, = 0),
for all n with o}, # 0 (single pixel changeor for all m € pen an = 6. Lemma 1 holdsz,, + &, — y,| < ¢ for all
G(n) holdsa;, = 0 (single pixel inversioh In the remaining 5o these changes im do not violate the constraints. Let us
cases (i.eouter boundary poinjswe set now propagate the changes to this. We will use a similar

Fp = — 6. relation as (12),
It can easily be verified thdg, &, 4, 3") satisfies (9). For this |G = G| = lag, — ap,| = ds(@n, am), (13)
feasible solution, the total change in the objective is writtejhere an important difference on the right hand side is that
as &, Gy are used instead of’, o,. A feasibley,, is obtained
1—-A\)N,6 . * x
- ( ﬁ\;& - % Zn, mlnmEG(n) 8(047” am) as ~ 53(G _
— 2ok =0 A Im € G(n) : i, # 0} + vd. T = Yo+ A $(Gim, G ).
Since For this feasible solution, the total change in the objective is
ST = ming,eqm slay,ay,) written as
+%‘5|{n|a:‘l=0/\3m66‘(n) cak # 0}, 5

i [(1 = A)(Ne + N,) + ASp — vN] (14)

the total change is rewritten asw + vé. If L .
statement 1 in the proposition were not true, the total char;grgereSO = 2 MaXmeG(n) 5(Gn, Am). So IS decomposed as

would be negative, which contradicts the assumption thap + 2Non, Where N, and Ny, are the number of boundary
[e*, a*,~*, B7] is optimal. and hard boundary points aftefs are changed. The signum

change occurs only in crucial pixels{ = 0), and if onea; is
For the second statement consider= ¢* — 6. We again changed from O to positive or negative, it increases the score at
construct a feasible solution. We first need most by one. If two neighbouring crucial points change their
Lemma 1:Let (¢,, B,7) be the optimal solution of (8) signs in opposite direction then the score increases at most



my two. The score increase for all neighbouring points of \ith respect toz,, can be analytically solved, and we have
crucial point increases at most by one. Hence the total scoeeluced the problem to
increase i§G| + 2. Thus

N J
So < S* + N,(G| +2). min 3" b (20 = D Bitin) (19)
n=1 j=1

So the total change is upperbounded by ) ) ) .

5 whereh,,(t) is again the Huber's loss functioh:, (t) = ;—7+%

— [(1 = A)(Ne + Np) + A(ST + N(|G| +2)) — vN] . if [t| < v and|t| if || > ~. The outlier process indicates

N (15) which pixels are ignored, but it does not directly represent the
If the statement denoised image. From the viewpoint of denoising, our slack

N variablesa seem to make more sense.
(I=A)N, +AST™ >vN — N(1+ A(|G|+ 1)),

were not true, then (15) would be negative, and we have a V. EXPERIMENTS

contradiction. We applied our new methods and the standard methods
To get to the second statement in the proposition, use fi%e the MPI face database [7], [8]. This dataset has 200
fact thatA < —-— and hence face images (100 males and 100 females) and each image
Gl+2 is rescaled to 4464. The images are artificially corrupted
L+ A(IGl+1) <2 by impulse and block noise. As impulse noise, 20% of the
- pixels are chosen randomly and set to 0. For block noise, a

rectangular region (10% of the pixels) is set to zero to hide
the eyes. We hide the same position for all images, but the
position of the rectangle isot known to our algorithm. The

A characteristic of the LP method is that tife,-norm task is to recover the original image based on the remaining
is used asd;. But other choices are of course possiblel99 images (i.e. |.0.0. cross validation).
For example, when the squared loss is adoptedi;asthe Our linear program is compared against the least squares

IV. DENOISING BY QP AND ROBUST STATISTICS

optimization problem (3) is rewritten as projection and the robust projection using Huber’s loss (i.e. the
N J ) on-manifold solution of QP). One could also apply the non-
min L Z (:vn +a, — Zﬂjtjn) + vl (16) convex robust losses for better robustness, e.g. Tukey's bi-

o8 N = = weight, Hampel, Geman-McClure, etc [1]. On the other hand,

.. . . we could also use the non-convex regularizers which are
This is a quadratic program (QP), which can also be solvescfe g

) . eper” than the;-norm for greater sparsity [9]. However,
py standard algorithms. In our experience, QP take; Ion%é will not trade convexity with denoising performance here,
time to solve than LP and the denoising performance is maqle

or less the same. Furthermore therick does not hold for €cause local minima often put practitioners into trouble. As a

o . eference, we also consider afealistic denoising method, to
QP. Nevertheless, it is interesting to take a close look at the. : - : 9 met
which we give the true position of noise. Here, the pixel values

QP method as it is more related to existing robust statistic . I : o

. . noisy positions are estimated by the least squares projection
approaches [1], [4]. The QP can partially be solved analytical ; ) . .

with respect tocy; nly with respect to the non-noise pixels. Then, the estimated

pixel values are plugged back into the original image. The

1 Y J linear manifold is made by PCA from the remaining 199
mﬁi}nﬁ Zp(l’n - Zﬂjt]’n), (17) images. The number of principal components is determined
n=1 j=1 such that the idealistic method performs the best. For impulse
wherep is the Huber’s loss and block noise images, it turned out to be 110 and 30,
2 v o< respectively. . . .
p(t) = { L2 2 ="=2 The reconstruction errors of LP and QP for impulse noise
vlt] -4 otherwise are shown in Fig. 4. Here, the reconstruction error is measured

Thus, the on-manifold solution of (16) corresponds to they the /;-norm between the images. Also an example of
robust projection by the Huber’s loss. In other words,is denoising is shown in Fig. 3.
considered as a set sfack variablesn the robust projection.  Both in LP and QP, the off-manifold solution outperforms
It is worthwhile to notice another choice of slack variablethe on-manifold one, which confirms our intuition that it is
proposed in [1]: effective to keep most pixels unchanged. Compared with the
Lo J , . Ieasr squares prrc])jection, the diffderence is (so Iage that tc:lne ck:‘an
. B . " L easily see it in the reconstructed images (Fig. 3). Notably, the
] Z Fn (I” z;ﬂ]t’”) + 1o (18) off-manifold solutions of LP and QP (cf. the solid curves in
1 n :Jl_... N Fig. 4, left and right) performed better than the on-manifold
’ Y solution of QP, which corresponds to the robust projection
Here the slack variables are denotedzasvhich is called the using Huber's loss (cf. the dashed curve in Fig. 4 right).
outlier procesq1]. Notice v is a regularization constant. Let The results for block noise are shown in Fig. 5, where we
us defineg, = z, — ijl Bit;n. Then the inside problem again averaged over the 200 faces (using l.0.0. cross validation



c: least squares d: Off-Manifold
a: original image b:noisy image proj. (702) v=0.4 (454)

%

Fig. 3. A typical result of denoising impulse noise. (a) An original face image. (b) The image corrupted by impulse noise. (c) Reconstruction by the least
squares projection to the PCA basis. The number)iistfows the reconstruction error. (d) Reconstruction by the LP (off-m.) when0.4.
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Fig. 4. Reconstruction errors of LP and QP methods for impulse noise. The solid and dashed lines corresponds to the off-manifold and on-manifold solutions.
The flat lines correspond to the least squares projection and the unrealistic setting where the correct positions of noise are given. The on-manifold solution
of QP corresponds to the robust projection by the Huber’s loss.

for the construction of the PCA basis). In the left figure, we
measure the reconstruction error for variotswith fixed \ =

0, i.e. the block constraints are not taken into account. As in
the case with impulse noise, the error is smaller than that of the v
least squares regression (PCA projection), and the minimum 0.5¢
is attained around’ = 1/2. Moreover, we investigated how
the error is further reduced by increasiigrom 0. As shown 0.4}
in the right figure, we obtain a substantial improvement.

upper bound (10)

Examples of reconstructed images are shown in Fig. 7. Here 0.3¢
we have shown variableas and v as well. When\ = 0,
nonzeroa’'s appear not only in the occluded part but also 0ol \
for instance along the face edge (Fig. 7:e). Wher= 1/2, lower bound (11)

nonzero o’s are more concentrated in the occluded part,

because the block constraints suppress an isolated nonzero 0.17

values (Fig. 7:h). In Fig. 7:i, one can see higls in the

edge pixels of occluded region, which indicates that the block 0

constraints are active for those pixels. 0 02 v 0.4 06

Finally we empirically verify proposition 2. In Fig. 6 we
plOt t_he lower and upper bound ofas glven_ln proposition 2 Fig. 6. lllustration of Proposition 2: Fok = 0.15 we compute the lower
for different values ofv. Observe that the difference betweeRnd upper bound of N for different v’s.
lower and upper bound is quite small.
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Fig. 5. Reconstruction errors of the LP method for block noise. (Left) the reconstruction error of the “plain” LP, where the block constraints are not taken
into account & = 0). The right plot shows the improvement for increasednd fixedv = 1/2.

c: least squares d: Off Manifold
a: original image b: noisy image proj. (1512) A=0 (1106) e:a [»=0]

f: Off Manifold g: On Manifold
1=0.5 (654) A2=0.5 (708) h: o [A=0.5] iry[A=0.5]

.i

Fig. 7. A typical result of denoising block noise (= 0.5). The numbers in-f in (c),(d),(f),(g) show the reconstruction errors. The image (d) shows

the denoising result when the block constraints are not taken into accdust (, v = 1/2). This result improves by imposing the block constraints

(A =1/2,v =1/4) as shown in (f) and (g), which are the off and on-manifold solutions, respectively. The images (e),(h) and (i) show the parameter values
obtained as the result of linear programming (see the text for details).




VI. CONCLUDING REMARKS

In summary, we have presented a new image denoisir

method based on linear programming. Our main idea is t
introduce sparsity by detaching the solution slightly from the
manifold. The on-manifold solution of our method is related tc
existing robust statistical approaches. Remarkably, our methc
can deal with block noise while retaining the convexity of
the optimization problem (every linear program is convex).

Existing approaches (e.g. [4]) tend to rely on non-convex

optimization to include the prior knowledge that the noise

forms blocks. Perhaps surprisingly, our convex approach can

solve this problem to a great extent.

A crucial difference between our method and the filtering

methods for image denoising (e.g. [3]) is that we rely or
the PCA subspace of admissible and clean images. Filterit
methods remove impulse noises based on statistical propert

can deal with any image in general. It is an intriguing questiol

of images. Therefore they do not need such a subspace, ¢ . .

whether linear programming can be used in this more gene
scenario as well. Also, we are looking forward to apply th@r biological Cybernetics in @bingen and at the Fraunhofer institute FIRST
linear programming to other computer vision problems whidh Berlin. His scientific interests and research areas include machine learning,

involve combinatorial optimization, e.g. image segmentatio
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