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THEORY OF CLASSIFICATION: A SURVEY OF RECENT ADVANCES ∗
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Abstract. The last few years have witnessed important new developments in the theory and practice
of pattern classification. We intend to survey some of the main new ideas that have lead to these
important recent developments.

Résumé. Durant ces dernières années, la théorie et la pratique de la reconnaissance des formes ont
été marquées par des développements originaux. Ce survol présente certaines des principales idées
novatrices qui ont conduit à ces développements importants.
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2 Laboratoire de Recherche en Informatique, CNRS & Université Paris-Sud, Orsay, France, stephane.boucheron@lri.fr
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1. Introduction

The last few years have witnessed important new developments in the theory and practice of pattern clas-
sification. The introduction of new and effective techniques of handling high-dimensional problems—such as
boosting and support vector machines—have revolutionized the practice of pattern recognition. At the same
time, the better understanding of the application of empirical process theory and concentration inequalities
have lead to effective new ways of understanding these methods and provided a statistical explanation for their
success. These new tools have also helped develop new model selection methods that are at the heart of any
classification method.

The purpose of this survey is to offer an overview of some of these theoretical tools and give the main ideas of
the analysis of some of the important algorithms. This survey does not attempt to be exhaustive. The selection
of the topics is largely influenced by the personal taste of the authors. We also limit ourselves to describing the
key ideas in a simple way, often sacrificing generality. In these cases the reader is pointed to the references for
the sharpest and more general results available.

2. Basic model

The problem of pattern classification is about guessing or predicting the unknown class of an observation. An
observation is often a collection of numerical and/or categorical measurements represented by a d-dimensional
vector x but in some cases it may even be a curve or an image. In our model we simply assume that x ∈ X
where X is some abstract (measurable) set. The unknown nature of the observation is called a class. It is
denoted by y and in the simplest case takes values in the binary set {−1, 1}.

In these notes we restrict our attention to binary classification. The reason is simplicity and that the binary
problem already captures many of the main features of more general problems. Even though there is much to
say about multiclass classification, this survey does not cover this increasing field of research.

In classification, one creates a function g(x) : X → {−1, 1} which represents one’s guess of y given x. The
mapping g is called a classifier . The classifier errs on x if g(x) 6= y.

To model the learning problem, we introduce a probabilistic setting, and let (X,Y ) be an X ×{−1, 1}-valued
random pair. The distribution of the random pair (X,Y ) may be described by the pair (µ, η), where µ is the
probability measure for X (i.e., µ(A) = P{X ∈ A}) and η(x) = P{Y = 1|X = x}. The function η is called the
a posteriori probability. We measure the performance of classifier g by its probability of error

L(g) = P{g(X) 6= Y } .

Given η, one may easily construct a classifier with minimal probability of error. In particular, it is easy to see
that if we define

g∗(x) =
{

1 if η(x) > 1/2
0 otherwise

then L(g∗) ≤ L(g) for any classifier g. L∗
def= L(g∗) is the Bayes risk (or Bayes error). More precisely, it is

immediate to see that
L(g)− L∗ = E

[
1{g(X) 6=g∗(X)} |2η(X)− 1|

]
≥ 0 . (1)
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g∗ is often called the Bayes classifier and In the statistical model we focus on, one has access to a collection
of data (Xi, Yi), 1 ≤ i ≤ n. We assume that (X1, Y1), . . . , (Xn, Yn) is a sequence of independent identically
distributed (i.i.d.) random pairs with the same distribution as that of (X,Y ).

A classifier is constructed on the basis of X1, Y1, . . . , Xn, Yn and is denoted by gn. Thus, the value of Y
is guessed by gn(X) = gn(X;X1, Y1, . . . , Xn, Yn). The performance of gn is measured by its (conditional)
probability of error

L(gn) = P{gn(X) 6= Y |X1, Y1, . . . , Xn, Yn)} .
The focus of the theory (and practice) of classification is to construct classifiers gn whose probability of error is
as close to L∗ as possible.

Obviously, the whole arsenal of traditional parametric and nonparametric statistics may be used to attack this
problem. However, the high-dimensional nature of many of the new applications (such as image recognition, text
classification, micro-biological applications, etc.) leads to territories beyond the reach of traditional methods.
Most new advances of statistical learning theory intent to face these new challenges.

Bibliographical remarks. Several textbooks, surveys, and research monographs have been written on pattern
classification and statistical learning theory. A partial list includes Anthony and Bartlett [8], Anthony and
Biggs [9], Breiman, Friedman, Olshen, and Stone [49], Devijver and Kittler [66], Devroye, Györfi, and Lugosi [67],
Duda and Hart [71], Duda, Hart, and Stork [72], Fukunaga [92], Kearns and Vazirani [110], Kulkarni, Lugosi, and
Venkatesh [121], Lugosi [137], McLachlan [163], Mendelson [165], Natarajan [168], Ripley [177], Vapnik [219,220],
Vapnik and Chervonenkis [223], and Vidyasagar [225].

3. Empirical risk minimization and Rademacher averages

A simple and natural approach to the classification problem is to consider a class C of classifiers g : X →
{−1, 1} and use data-based estimates of the probabilities of error L(g) to select a classifier from the class. The
most natural choice to estimate the probability of error L(g) = P{g(X) 6= Y } is the error count

Ln(g) =
1
n

n∑
i=1

1{g(Xi) 6=Yi} .

Ln(g) is called the empirical error of the classifier g.
First we outline the basics of the theory of empirical risk minimization (i.e., the classification analog of

M -estimation). Denote by g∗n the classifier that minimizes the estimated probability of error over the class:

Ln(g∗n) ≤ Ln(g) for all g ∈ C.

Then the probability of error
L(g∗n) = P {g∗n(X) 6= Y |Dn}

of the selected rule is easily seen to satisfy the elementary inequalities

L(g∗n)− inf
g∈C

L(g) ≤ 2 sup
g∈C

|Ln(g)− L(g)| , (2)

L(g∗n) ≤ Ln(g∗n) + sup
g∈C

|Ln(g)− L(g)| .

We see that by guaranteeing that the uniform deviation supg∈C |Ln(g) − L(g)| of estimated probabilities from
their true values is small, we make sure that the probability of the selected classifier g∗n is not much larger than
the best probability of error in the class C and at the same time the empirical estimate Ln(g∗n) is also good.

Clearly, the random variable nLn(g) is binomially distributed with parameters n and L(g). Thus, to obtain
bounds for the success of empirical error minimization, we need to study uniform deviations of binomial random
variables from their means. We formulate the problem in a somewhat more general way as follows. Let
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X1, . . . , Xn be independent, identically distributed random variables taking values in some set X and let F be
a class of bounded functions X → [−1, 1]. Denoting expectation and empirical averages by P (f) = Ef(X1) and
Pn(f) = (1/n)

∑n
i=1 f(Xi), we are interested in upper bounds for the maximal deviation

sup
f∈F

(P (f)− Pn(f)) .

Concentration inequalities are among the basic tools in studying such deviations. The simplest, yet quite
powerful exponential concentration inequality is the bounded differences inequality which states that if g : Xn →
R is a function of n variables such that for some nonnegative constants c1, . . . , cn,

sup
x1,...,xn,

x′i∈X

|g(x1, . . . , xn)− g(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci , 1 ≤ i ≤ n

and X1, . . . , Xn are independent random variables, then the random variable Z = g(X1, . . . , Xn) satisfies

P {|Z −EZ| > t} ≤ 2e−2t2/C .

The bounded differences assumption means that if the i-th variable of g is changed while keeping all the others
fixed, the value of the function cannot change by more than ci.

Our main example for such a function is

Z = sup
f∈F

(P (f)− Pn(f)) .

Obviously, Z satisfies the bounded differences assumption with ci = 2/n and therefore, for any δ ∈ (0, 1), with
probability at least 1− δ,

sup
f∈F

(P (f)− Pn(f)) ≤ E sup
f∈F

(P (f)− Pn(f)) +

√
2 log 1

δ

n
. (3)

This concentration result allows us to focus on the expected value that can be bounded conveniently by a
simple symmetrization device. Introduce the “ghost sample” X ′

1, . . . , X
′
n, independent of the Xi and distributed

identically. If P ′n(f) = (1/n)
∑n

i=1 f(X ′
i) denotes the empirical averages measured on the ghost sample, then

by Jensen’s inequality,

E sup
f∈F

(P (f)− Pn(f)) = E sup
f∈F

(E[P ′n(f)− Pn(f)|X1, . . . , Xn]) ≤ E sup
f∈F

(P ′n(f)− Pn(f)) .

Let now σ1, . . . , σn be independent random variables with P{σi = 1} = P{σi = −1} = 1/2, independent of the
Xi and X ′

i. Then

E sup
f∈F

(P ′n(f)− Pn(f)) = E sup
f∈F

1
n

n∑
i=1

(f(X ′
i)−f(Xi)) = E sup

f∈F

1
n

n∑
i=1

σi(f(X ′
i)−f(Xi)) ≤ 2E sup

f∈F

1
n

n∑
i=1

σif(Xi) .

Let A ∈ Rn be a bounded set of vectors a = (a1, . . . , an), and introduce the quantity

Rn(A) = E sup
a∈A

1
n

n∑
i=1

σiai .
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Rn(A) is called the Rademacher average associated to A. For a given sequence x1, . . . , xn ∈ X , we write F(xn
1 )

for the class of n-vectors (f(x1), . . . , f(xn)) with f ∈ F . Thus, using this notation, we have deduced that with
probability at least 1− δ,

sup
f∈F

(P (f)− Pn(f)) ≤ 2ERn(F(Xn
1 ) +

√
2 log 1

δ

n
.

Noticing that the random variable Rn(F(Xn
1 ) satisfies the conditions of the bounded differences inequality, we

also have

sup
f∈F

(P (f)− Pn(f)) ≤ 2Rn(F(Xn
1 )) +

√
2 log 2

δ

n
.

This is our first data-dependent performance bound. It involves the Rademacher average of the coordinate
projection of F given by the data X1, . . . , Xn. Given the data, one may calculate the Rademacher average,
for example, by Monte Carlo integration. Note that for a given choice of the random signs σ1, . . . , σn, the
computation of supf∈F

1
n

∑n
i=1 σif(Xi) is equivalent to minimizing −

∑n
i=1 σif(Xi) over f ∈ F and therefore

it is computationally equivalent to empirical risk minimization. Rn(F(Xn
1 )) measures the richness of the class

F and provides a sharp estimate for the maximal deviations. In fact, one may prove that

1
2
ERn(F(Xn

1 ))− 1
2
√
n
≤ E sup

f∈F
(P (f)− Pn(f)) ≤ 2ERn(F(Xn

1 )))

(see, e.g., [217]).
Next we recall some of the simple structural properties of Rademacher averages. Let A,B be bounded

subsets of Rn and let c ∈ R be a constant. Then the following subadditivity properties are immediate from the
definition:

Rn(A ∪B) ≤ Rn(A) +Rn(B) , Rn(c ·A) = |c|Rn(A) , Rn(A⊕B) ≤ Rn(A) +Rn(B)

where c·A = {ca : a ∈ A} and A⊕B = {a+b : a ∈ A, b ∈ B}. It is also easy to see that if A = {a(1), . . . , a(N)} ⊂
Rn is a finite set, then

Rn(A) ≤ max
j=1,...,N

‖a(j)‖
√

2 logN
n

. (4)

The above inequality follows by Hoeffding’s inequality which states that if X is a bounded zero-mean random
variable taking values in an interval [α, β], then for any s > 0, E exp(sX) ≤ exp

(
s2(β − α)2/8

)
. In particular,

by independence,

E exp

(
s
1
n

n∑
i=1

σiai

)
=

n∏
i=1

E exp
(
s
1
n
σiai

)
≤

n∏
i=1

exp
(
s2a2

i

2n2

)
= exp

(
s2‖a‖2

2n2

)
This implies that

esRn(A) = exp

(
sE max

j=1,...,N

1
n

n∑
i=1

σia
(j)
i

)
≤ E exp

(
s max

j=1,...,N

1
n

n∑
i=1

σia
(j)
i

)

≤
N∑

j=1

Ees 1
n

Pn
i=1 σia

(j)
i ≤ N max

j=1,...,N
exp

(
s2‖a(j)‖2

2n2

)
.

Taking the logarithm of both sides, dividing by s, and choosing s to minimize the obtained upper bound for
Rn(A), we arrive at (4). Finally, we mention two important properties of Rademacher averages. The first is
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that if absconv(A) =
{∑N

j=1 cja
(j) : N ∈ N,

∑N
j=1 |cj | ≤ 1, a(j) ∈ A

}
is the absolute convex hull of A, then

Rn(A) = Rn(absconv(A)) (5)

as it is easily seen from the definition. The second is known as the contraction principle: let φ : R → R be a
function with φ(0) = 0 and Lipschitz constant Lφ. Defining φ◦A as the set of vectors of form (φ(a1), . . . , φ(an)) ∈
Rn with a ∈ A, we have

Rn(φ ◦A) ≤ LφRn(A) .

Often it is useful to derive further upper bounds on Rademacher averages. As an illustration, we consider
the case when F is a class of indicator functions. Recall that this is the case in our motivating example in
the classification problem described above when each f ∈ F is the indicator function of a set of the form
{(x, y) : 1g(x) 6=y. In such a case, for any collection of points xn

1 = (x1, . . . , xn), F(xn
1 ) is a finite subset of Rn

whose cardinality is denoted by SF (xn
1 ) and is called the vc shatter coefficient. Obviously, SF (xn

1 ) ≤ 2n. By
inequality (4), we have, for all xn

1 ,

Rn(F(xn
1 )) ≤

√
2 log SF (xn

1 )
n

(6)

where we used the fact that for each f ∈ F ,
∑

i f(Xi)2 ≤ n. In particular,

E sup
f∈F

(P (f)− Pn(f)) ≤ 2E

√
2 log SF (Xn

1 )
n

.

The logarithm of the vc shatter coefficient may be upper bounded in terms of a combinatorial quantity, called
the vc dimension. If A ⊂ {−1, 1}n, then the vc dimension of A is the size V of the largest set of indices
{i1, . . . , iV } ⊂ {1, . . . , n} such that for each binary V -vector b = (b1, . . . , bV ) ∈ {−1, 1}V there exists an
a = (a1, . . . , an) ∈ A such that (a11 , . . . , aiV

) = b. The key inequality establishing a relationship between
shatter coefficients and vc dimension is known as Sauer’s lemma which states that the cardinality of any set
A ⊂ {−1, 1}n may be upper bounded as

|A| ≤
V∑

i=0

(
n

i

)
≤ (n+ 1)V

where V is the vc dimension of A. In particular,

log SF (xn
1 ) ≤ V (xn

1 ) log(n+ 1)

where we denote by V (xn
1 ) the vc dimension of F(xn

1 ). Thus, the expected maximal deviation E supf∈F (P (f)−
Pn(f)) may be upper bounded by 2E

√
2V (Xn

1 ) log(n+ 1)/n . To obtain distribution-free upper bounds, intro-
duce the vc dimension of a class of binary functions F , defined by

V = sup
n,xn

1

V (xn
1 ) .

Then clearly, for all distributions one has

E sup
f∈F

(P (f)− Pn(f)) ≤ 2

√
2V log(n+ 1)

n
.
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This bound is a version of what has been known as the Vapnik-Chervonenkis inequality. By a somewhat refined
analysis (called chaining) the logarithmic factor can be removed resulting a bound of the form

E sup
f∈F

(P (f)− Pn(f)) ≤ C

√
V

n

for a universal constant C. The vc dimension is an important combinatorial parameter of the class and many
of its properties are well known. Here we just recall one useful result and refer the reader to the references
for further study: let G be an m-dimensional vector space of real-valued functions defined on X . The class of
indicator functions

F =
{
f(x) = 1g(x)≥0 : g ∈ G

}
has vc dimension V ≤ m.

Bibliographical remarks. Uniform deviations of averages from their expectations is one of the central prob-
lems of empirical process theory. Here we merely refer to some of the comprehensive coverages, such as Dud-
ley [78], Giné [93], Shorack and Wellner [188], Vapnik [221], van der Vaart and Wellner [217]. The use of empirical
processes in classification was pioneered by Vapnik and Chervonenkis [222,223] and re-discovered 20 years later
by Blumer, Ehrenfeucht, Haussler, and Warmuth [37], Ehrenfeucht, Haussler, Kearns, and Valiant [83]. For
surveys see Anthony and Bartlett [8], Anthony and Biggs [9], Devroye, Györfi, and Lugosi [67], Kearns and
Vazirani [110], Natarajan [168], Ripley [177], Vapnik [220,221] Vidyasagar [225].

The bounded differences inequality was formulated explicitly first by McDiarmid [160] who proved it by
martingale methods (see the surveys [160], [161]), but closely related concentration results have been obtained
in various ways including information-theoretic methods (see Alhswede, Gács, and Körner [1], Marton [147],
[148], [149], Dembo [65], Massart [151] and Rio [175]), Talagrand’s induction method [206], [202], [205] (see
also Luczak and McDiarmid [136], McDiarmid [162], Panchenko [169–171]) and the so-called “entropy method”,
based on logarithmic Sobolev inequalities, developed by Ledoux [125], [124], see also Bobkov and Ledoux [38],
Massart [152], Rio [175], Boucheron, Lugosi, and Massart [41], [42], Boucheron, Bousquet, Lugosi, and Massart
[40], and Bousquet [43].

The simple symmetrization trick shown above is due to Giné and Zinn [94] but different forms of symmetriza-
tion have been at the core of obtaining related results of several flavor, see Anthony and Shawe-Taylor [10],
Cannon, Ettinger, Hush, Scovel [51], Herbrich and Williamson [103], Mendelson and Philips [166], Vapnik and
Chervonenkis [222,223].

The use of Rademacher averages in classification was first promoted by Koltchinskii [117] and Bartlett,
Boucheron, and Lugosi [20], see also Koltchinskii and Panchenko [119,120], Bartlett and Mendelson [26], Bartlett,
Bousquet, and Mendelson [21], Bousquet, Koltchinskii, and Panchenko [46], Kégl, Linder, and Lugosi [11],
Mendelson [164].

Hoeffding’s inequality appears in [104]. For a proof of the contraction principle we refer to Ledoux and
Talagrand [126].

Sauer’s lemma was proved independently by Sauer [179], Shelah [187], and Vapnik and Chervonenkis [222].
For related combinatotial results we refer to Alesker [6], Alon, Ben-David, Cesa-Bianchi, and Haussler [7], Cesa-
Bianchi and Haussler [56], Frankl [85], Haussler [101], Mendelson and Vershinin [167], Szarek and Talagrand
[199].

The question of how supf∈F (P (f)− Pn(f)) behaves has been known as the Glivenko-Cantelli problem and
much has been said about it. A few key references include Alon, Ben-David, Cesa-Bianchi, and Haussler [7],
Dudley [74,76,77], Dudley, Giné, and Zinn [79], Li, Long, and Srinivasan [131], Mendelson and Vershinin [167],
Talagrand [200,201,203,207], Vapnik and Chervonenkis [222,224].

The vc dimension has been widely studied and many of its properties are known. We refer to Anthony
and Bartlett [8], Assouad [13] Bartlett and Maass [25], Cover [59], Dudley [75, 78], Goldberg and Jerrum [96],
Karpinski and A. Macintyre [107], Khovanskii [111], Koiran and Sontag [114], Macintyre and Sontag [142],
Steele [193], and Wenocur and Dudley [228].
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4. Minimizing cost functions: some basic ideas behind boosting and svm’s

The results summarized in the previous section guarantee that minimizing the empirical risk Ln(g) over a
class C of classifiers with a vc dimension much smaller than the sample size n is guaranteed to work well. This
result has two fundamental problems. First, by requiring that the vc dimension be small, one imposes serious
limitations on the approximation properties of the class. In particular, even though the difference between the
probability of error L(gn) of the empirical risk minimizer is close to the smallest probability of error infg∈C L(g)
in the class, infg∈C L(g) − L∗ may be very large. The other problem is algorithmic: minimizing the empirical
probability of misclassification L(g) is very often a computationally difficult problem. Even in seemingly simple
cases, for example when X = Rd and C is the class of classifiers that split the space observations by a hyperplane,
the minimization problem is np hard.

4.1. Margin-based performance bounds

An attempt to solve both of these problems is to modify the empirical functional to be minimized by intro-
ducing a cost function. Next we describe the main ideas of empirical minimization of cost functionals and its
analysis. We consider classifiers of the form

gf (x) =
{

1 if f(x) ≥ 0
−1 otherwise

where f : X → R is a real-valued function. In such a case the probability of error of g may be written as

L(gf ) = P{sgn(f(X)) 6= Y } ≤ E1f(X)Y <0 .

To lighten notation we will simply write L(f) = L(gf ). Let φ : R → R+ be a nonnegative valued cost function
such that φ(x) ≥ 1x>0. (Typical choices of φ include φ(x) = ex, φ(x) = log2(1 + ex), and φ(x) = (1 + x)+.)
Introduce the cost functional and its empirical version by

A(f) = Eφ(−f(X)Y ) and An(f) =
1
n

n∑
i=1

φ(−f(Xi)Yi) .

Obviously, L(f) ≤ A(f) and Ln(f) ≤ An(f). Assume that the function fn is chosen from a class F based on
the data (Z1, . . . , Zn) def= (X1, Y1), . . . , (Xn, Yn). Then the probability of error of the corresponding classifier
may be bounded by the argument of the previous section as follows: let B denote a uniform upper bound on
φ(−f(x)y). Then with probability at least 1− δ,

L(fn) ≤ A(fn)
≤ An(fn) + sup

f∈F
(A(f)−An(f))

≤ An(fn) + 2ERn(φ ◦ H(Zn
1 )) +B

√
2 log 1

δ

n

(where H is the class of functions X × {−1, 1} → R of the form −f(x)y, f ∈ F)

≤ An(fn) + 2LφERn(H(Zn
1 )) +B

√
2 log 1

δ

n

(by the contraction principle cited in the previous section where Lφ is the Lipschitz constant of φ)

= An(fn) + 2LφERn(F(Xn
1 )) +B

√
2 log 1

δ

n
.
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Thus, the Rademacher average of the class of real-valued functions f bounds the performance of the classifier.

4.1.1. Weighted voting schemes

In many applications such as boosting and bagging, classifiers are combined by weighted voting schemes which
means that the classification rule is obtained by means of functions f from a class

Fλ =

f(x) =
N∑

j=1

cjgj(x) : N ∈ N,
N∑

j=1

|cj | ≤ λ, g1, . . . , gN ∈ C

 (7)

where C is a class of base classifiers, that is, functions defined on X , taking values in {−1, 1}. A classifier of
this form may be thought of as one that, upon observing x, takes a weighted vote of the classifiers g1, . . . , gN

(using the weights c1, . . . , cN ) and decides according to the weighted majority. In this case, by (5) and (6) we
have

= λRn(C(Xn
1 )) ≤ λ

√
2VC log(n+ 1)

n
where VC is the vc dimension of the base class.

To understand the richness of classes formed by weighted averages of classifiers from a base class, just
consider the simple one-dimensional example in which the base classifier C contains all classifiers of the form
g(x) = 21x≤a − 1, a ∈ R. Then VC = 1 and the closure of Fλ (under the L∞ norm) is the set of all functions
of total variation bounded by 2λ. Thus, Fλ is rich in the sense that any classifier may be approximated by
classifiers associated to the functions in Fλ. In particular, the vc dimension of the class of all classifiers induced
by functions in Fλ is infinite.

Summarizing, we have obtained that if Fλ is of the form indicated above, then for any function fn chosen
from Fλ in a data-based manner, the probability of error of the associated classifier satisfies, with probability
at least 1− δ,

L(fn) ≤ An(fn) + 2Lφλ

√
2VC log(n+ 1)

n
+B

√
2 log 1

δ

n
. (8)

The remarkable fact about this inequality is that the upper bound only involves the vc dimension of the class
C of base classifiers which is typically small. The price we pay is that the first term on the right-hand side is
the empirical cost functional instead of the empirical probability of error. As a first illustration, consider the
example when γ is a fixed positive parameter and

φ(x) =

 0 if x ≤ −γ
1 if x ≥ 0
1 + x/γ otherwise

In this case B = 1 and Lφ = 1/γ. Notice also that 1x>0 ≤ φ(x) ≤ 1x>−γ and therefore An(f) ≤ Lγ
n(f) where

Lγ
n(f) is the so-called margin error defined by

Lγ
n(f) =

1
n

n∑
i=1

1f(Xi)Yi<γ .

Notice that for all γ > 0, Lγ
n(f) ≥ Ln(f) and the Lγ

n(f) is increasing in γ. An interpretation of the margin
error Lγ

n(f) is that it counts, apart from the number of misclassified pairs (Xi, Yi), also those which are well
classified but only with a small “confidence” (or “margin”) by f . Thus, (8) implies that, for any γ > 0, with
probability at least 1− δ,

L(fn) ≤ Lγ
n(fn) + 2

λ

γ

√
2VC log(n+ 1)

n
+

√
2 log 1

δ

n
. (9)
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Notice that, as γ grows, the first term of the sum increases, while the second decreases. The bound can be
very useful whenever a classifier has a small margin error for a relatively large γ (i.e., if the classifier classifies
the training data well with high “confidence”) since the second term only depends on the vc dimension of the
small base class C. This result has been used to explain the good behavior of some voting methods such as
AdaBoost, since these methods have a tendency to find classifiers that classify the data points well with a
large margin.

4.1.2. Kernel methods

Another popular way to obtain classification rules from a class of real-valued functions which is used in kernel
methods such as Support Vector Machines (SVM) or Kernel Fisher Discriminant (KFD) is to consider balls of
a reproducing kernel Hilbert space.

The basic idea is to use a positive definite kernel function k : X × X → R, that is, a symmetric function
satisfying

n∑
i,j=1

αiαjk(xi, xj) ≥ 0 ,

for all choices of n, α1, . . . , αn ∈ R and x1, . . . , xn ∈ X . Such a function naturally generates a space of functions
of the form

F =

{
n∑

i=1

αik(xi, ·) : n ∈ N, αi ∈ R, xi ∈ X

}
,

which, with the inner product 〈
∑
αik(xi, ·),

∑
βjk(xj , ·)〉

def=
∑
αiβjk(xi, xj) can be completed into a Hilbert

space.
The key property is that for all x1, x2 ∈ X there exist elements φx1 , φx2 ∈ F such that k(x1, x2) = 〈φx1 , φx2〉.

This means that any linear algorithm based on computing inner products only can be extended into a non-linear
version by replacing the inner products by a kernel function. The advantage is that even though the algorithm
remains of low complexity, it works in a class of functions that can potentially represent any continuous function
arbitrarily well (provided k is chosen appropriately).

Algorithms working with kernels usually perform minimization of a cost function on a ball of the associated
reproducing kernel Hilbert space of the form

Fλ =

f(x) =
N∑

j=1

cjk(xj , x) : N ∈ N,
N∑

i,j=1

cicjk(xi, xj) ≤ λ2, x1, . . . , xN ∈ X

 . (10)

Notice that, in contrast with (7) where the constraint is of `1 type, the constraint here is of `2 type. Also, the
basis functions, instead of being chosen from a fixed class, are determined by elements of X themselves. The
consequences are mainly computational as they allow to have a number of parameters equal to the number of
samples instead of the number of functions in the base class or the dimension of the input space.

An important property of functions in the reproducing kernel Hilbert space associated to k is that for all
x ∈ X ,

f(x) = 〈f, k(x, ·)〉 .

This is called the reproducing property. The reproducing property may be used to estimate precisely the
Rademacher average of Fλ. Indeed, denoting by Eσ expectation with respect to the Rademacher variables
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σ1, . . . , σn, we have

Rn(Fλ(Xn
1 )) =

1
n
Eσ sup

‖f‖≤λ

n∑
i=1

σif(Xi)

=
1
n
Eσ sup

‖f‖≤λ

n∑
i=1

σi〈f, k(Xi, ·)〉

=
λ

n
Eσ

∥∥∥∥∥
n∑

i=1

σik(Xi, ·)

∥∥∥∥∥ .
The Kahane-Khinchine inequality states that for any vectors a1, . . . , an in a Hilbert space,

1√
2
E

∥∥∥∥∥
n∑

i=1

σiai

∥∥∥∥∥
2

≤

(
E

∥∥∥∥∥
n∑

i=1

σiai

∥∥∥∥∥
)2

≤ E

∥∥∥∥∥
n∑

i=1

σiai

∥∥∥∥∥
2

.

It is also easy to see that

E

∥∥∥∥∥
n∑

i=1

σiai

∥∥∥∥∥
2

= E

n∑
i,j=1

σiσj〈ai, aj〉 =
n∑

i=1

‖ai‖2 ,

so we obtain

λ

n
√

2

√√√√ n∑
i=1

k(Xi, Xi) ≤ Rn(Fλ(Xn
1 )) ≤ λ

n

√√√√ n∑
i=1

k(Xi, Xi) .

This is very nice as it gives a bound that can be computed very easily from the data. A reasoning similar
to the one leading to (9) using the bounded differences inequality to replace the Rademacher average by its
empirical version gives that, with probability at least 1− δ,

L(fn) ≤ Lγ
n(fn) + 2

λ

γn

√√√√ n∑
i=1

k(Xi, Xi) +

√
2 log 2

δ

n
.

4.2. Convex cost functionals

Next we show that a proper choice of the cost function φ has further advantages. To this end, we consider
nonnegative convex nondecreasing cost functions with limx→−∞ φ(x) = 0 and φ(0) = 1. Main examples of φ
include the exponential cost function φ(x) = ex used in AdaBoost and related boosting algorithms, the logit
cost function φ(x) = log2(1 + ex), and the hinge loss (or soft margin loss) φ(x) = (1 + x)+ used in support
vector machines. One of the main advantages of using convex cost functions is that minimizing the empirical
cost An(f) often becomes a convex optimization problem and is therefore computationally feasible. In fact,
most boosting and support vector machine classifiers may be viewed as empirical minimizers of a convex cost
functional.

However, minimizing convex cost functionals have other theoretical advantages. To understand this, assume,
in addition to the above, that φ is strictly convex and differentiable. Then it is easy to determine the function
f∗ minimizing the cost functional A(f) = Eφ(−Y f(X). Just note that for each x ∈ X ,

E [φ(−Y f(X)|X = x] = η(x)φ(−f(x)) + (1− η(x))φ(f(x))

and therefore the function f∗ is given by

f∗(x) = argminα hη(x)(α)
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where for each η ∈ [0, 1], hη(α) = ηφ(−α) + (1 − η)φ(α). Note that hη is strictly convex and therefore f∗ is
well defined (though it may take values ±∞ if η equals 0 or 1). The minimum is achieved for the value of α for
which h′η(α) = 0, that is, when

η

1− η
=

φ′(α)
φ′(−α)

.

Since φ′ is strictly increasing, we see that the solution is positive if and only if η > 1/2. This reveals the important
fact that the minimizer f∗ of the functional A(f) is such that the corresponding classifier g∗(x) = 21f∗(x)≥0−1 is
just the Bayes classifier. Thus, minimizing a convex cost functional leads to an optimal classifier. For example,
if φ(x) = ex is the exponential cost function, then f∗(x) = (1/2) log(η(x)/(1 − η(x))). In the case of the logit
cost φ(x) = log2(1 + ex), we have f∗(x) = log(η(x)/(1− η(x))).

We note here that, even though the hinge loss φ(x) = (1 + x)+ does not satisfy the conditions for φ used
above (e.g., it is not strictly convex), it is easy to see that the function f∗ minimizing the cost functional equals

f∗(x) =
{

1 if η(x) > 1/2
−1 if η(x) < 1/2

Thus, in this case the f∗ not only induces the Bayes classifier but it equals to it.
To obtain inequalities for the probability of error of classifiers based on minimization of empirical cost

functionals, we need to establish a relationship between the excess probability of error L(f) − L∗ and the
corresponding excess cost functional A(f) − A∗ where A∗ = A(f∗) = inff A(f). Here we recall a simple
inequality of Zhang [232] which states that if the function H : [0, 1] → R is defined by H(η) = infα hη(α) and
the cost function φ is such that for some positive constants s ≥ 1 and c ≥ 0∣∣∣∣12 − η

∣∣∣∣s ≤ cs(1−H(η)) , η ∈ [0, 1] ,

then for any function f : X → R,
L(f)− L∗ ≤ 2c (A(f)−A∗)1/s

. (11)
(The simple proof of this inequality is based on the expression (1) and elementary convexity properties of hη. )
In the special case of the exponential and logit cost functions H(η) = 2

√
η(1− η) and H(η) = −η log2 η− (1−

η) log2(1 − η), respectively. In both cases it is easy to see that the condition above is satisfied with s = 2 and
c =

√
2. Thus, in both of these cases, we have that if fn is chosen from a class Fλ defined in (7) then

L(fn)− L∗ ≤ 2
√

2 (A(fn)−A∗)1/2

≤ 2
√

2
(
A(fn)− inf

f∈Fλ

A(f)
)1/2

+ 2
√

2
(

inf
f∈Fλ

A(f)−A∗
)1/2

≤ 4
√

2

(
sup

f∈Fλ

|A(f)−An(f)|

)1/2

+ 2
√

2
(

inf
f∈Fλ

A(f)−A∗
)1/2

(just like in (2))

≤ 4
√

2

2Lφλ

√
2VC log(n+ 1)

n
+B

√
2 log 1

δ

n

1/2

+ 2
√

2
(

inf
f∈Fλ

A(f)−A∗
)1/2

(12)

with probability at least 1− δ, where at the last step we used the same bound for supf∈Fλ
|A(f)−An(f)| as in

(8). Note that for the exponential cost function Lφ = eλ and B = λ while for the logit cost Lφ ≤ 1 and B = λ.
In both cases, if λ is sufficiently large so that inff∈Fλ

A(f) = A∗ then the approximation error disappears and
we obtain L(fn) − L∗ = O

(
n−1/4

)
. The dimension-free nature of this rate of convergence is remarkable. (We
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note here that these rates may be further improved by applying the refined techniques resumed in Section 5.3,
see also [36].) It is an interesting approximation-theoretic challenge to understand what kind of functions f∗

may be obtained as a convex combination of base classifiers and, more generally, to describe approximation
properties of classes of functions of the form (7).

Next we describe a simple example when the above-mentioned approximation properties are well understood.
Consider the case when X = [0, 1]d and the base class C contains all “decision stumps”, that is, all classifiers
of the form s+i,t(x) = 1x(i)≥t − 1x(i)<t and s−i,t(x) = 1x(i)<t − 1x(i)≥t, t ∈ [0, 1], i = 1, . . . , d, where x(i) denotes
the i-th coordinate of x. In this case the vc dimension of the base class is easily seen to be bounded by
VC ≤ b2 log2(2d)c. Also it is easy to see that the closure of Fλ with respect to the supremum norm contains all
functions f of the form

f(x) = f1(x(1)) + · · ·+ fd(x(d))
where the functions fi : [0, 1] → R are such that |f1|TV + · · · + |fd|TV ≤ λ where |fi|TV denotes the total
variation of the function fi. Therefore, if f∗ has the above form, we have inff∈Fλ

A(f) = A(f∗). Recalling that
the function f∗ optimizing the cost A(f) has the form

f∗(x) =
1
2

log
η(x)

1− η(x)

in the case of the exponential cost function and

f∗(x) = log
η(x)

1− η(x)

in the case of the logit cost function, we see that boosting using decision stumps is especially well fitted to the
so-called additive logistic model in which η is assumed to be such that log(η/(1−η)) is an additive function (i.e.,
it can be written as a sum of univariate functions of the components of x). Thus, when η permits an additive
logistic representation then the rate of convergence of the classifier is fast and has a very mild dependence on
the distribution.

Consider next the case of the hinge loss φ(x) = (1 + x)+ often used in Support Vector Machines and related
kernel methods. In this case H(η) = 2 max(η, 1− η) and therefore inequality (11) holds with c = 2 and s = 1.
Thus,

L(fn)− L∗ ≤ 4 (A(fn)−A∗)
and the analysis above leads to even better rates of convergence. However, in this case f∗(x) = 21η(x)≥1/2 − 1
and approximating this function by weighted sums of base functions may be more difficult than in the case of
exponential and logit costs. Once again, the approximation-theoretic part of the problem is far from being well
understood, and it is difficult to give recommendations about which cost function is more advantageous and
what base classes should be used.

Bibliographical remarks. For results on the algorithmic difficulty of empirical risk minimization, see Johnson
and Preparata [106], Bartlett and Ben-David [23], Ben-David, Eiron, and Simon [28], Vu [226].

Boosting algorithms were originally introduced by Freund and Schapire (see [86], [89], and [180]), as adaptive
aggregation of simple classifiers contained in a small “base class”. The analysis based on the observation that
AdaBoost and related methods tend to produce large-margin classifiers appears in Schapire, Freund, Bartlett,
and Lee [181], and Koltchinskii and Panchenko [120]). It was Breiman [47] who observed that boosting performs
gradient descent optimization of an empirical cost function different from the number of misclassified samples,
see also Mason, Baxter, Bartlett, and Frean [150], Collins, Schapire, and Singer [57], Friedman, Hastie, and
Tibshirani [90]. Based on this view, various versions of boosting algorithms have been shown to be consistent
in different settings, see Blanchard, Lugosi, and Vayatis [36], Breiman [48], Bühlmann and Yu [50], Jiang [105],
Lugosi and Vayatis [139], Mannor and Meir [145], Mannor, Meir, and Zhang [146], Zhang [232]. Inequality
(8) was first obtained by Schapire, Freund, Bartlett, and Lee [181]. The analysis presented here is due to
Koltchinskii and Panchenko [120].
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Other classifiers based on weighted voting schemes have been considered by Freund, Mansour, and Schapire
[88], Catoni [53–55], Yang [231].

Support vector machines originate in the pioneering work of Boser, Guyon, and Vapnik [39], Cortes and
Vapnik [58], but some of the ideas can be traced back to Vapnik and Lerner [218], Aizerman, Braverman, and
Rozonoer [2–4], Bashkirov, Braverman, and Muchnik [27], Specht [192], and Vapnik and Chervonenkis [223].
For surveys we refer to Cristianini and Shawe-Taylor [61], Hastie, Tibshirani, and Friedman [99], Schölkopf and
Smola [182], Smola, Bartlett, Schölkopf, and Schuurmans [190].

The study of universal approximation properties of kernels and statistical consistency of Support Vector
Machines is due to Steinwart [194–196] and Lin [133,134].

We have considered the case of minimization of a loss function on a ball of the reproducing kernel Hilbert
space. However, it is computationally more convenient to formulate the problem as the minimization of a
regularized functional of the form

min
f∈F

1
n

n∑
i=1

φ(−Yif(Xi)) + λ‖f‖2 .

The standard Support Vector Machine algorithm then corresponds to the choice of φ(x) = (1 + x)+.
Kernel based regularization algorithms were studied by Craven and Wahba [60] and Kimeldorf and Wahba [113],

in the context of regression. Relationships between Support Vector Machines and regularization were described
by Evgeniou, Pontil and Poggio [84] and Smola, Schölkopf and Müller [191]. General properties of regularized
algorithms in reproducing kernel Hilbert spaces are investigated by Cucker and Smale [64], Steinwart [195],
Zhang [232].

Various properties of the Support Vector Machine algorithm are investigated by Vapnik [220,221], Schölkopf
and Smola [182], Scovel and Steinwart [185] and Steinwart [197,198].

The fact that minimizing an exponential cost functional leads to the Bayes classifier was pointed out by
Breiman [48], see also Lugosi and Vayatis [139], Zhang [232]. For a comprehensive theory of the connection
between cost functions and probability of misclassification, see Bartlett, Jordan, and McAuliffe [24]. Zhang’s
lemma (11) appears in [232]. For various generalizations and refinements we refer to Bartlett, Jordan, and
McAuliffe [24] and Blanchard, Lugosi, and Vayatis [36].

5. Tighter bounds for empirical risk minimization

This section is dedicated to the description of some refinements of the ideas described in the earlier sections.
What we have seen so far only used ”first-order” properties of the functions that we considered, namely their
boundedness. It turns out that using ”second-order” properties, like the variance of the functions, many of the
above results can be made sharper.

5.1. Relative Deviations

In order to understand the basic phenomenon, let us go back to the simplest case in which one has a fixed
function f with values in {0, 1}. In this case, Pn(f) is an average of independent Bernoulli random variables
with parameter p = P (f). Recall that, as a simple consequence of (3), with probability at least 1− δ,

P (f)− Pn(f) ≤

√
2 log 1

δ

n
. (13)

This is basically tight when P (f) = 1/2, but can be significantly improved when P (f) is small. Indeed,
Bernstein’s inequality gives, with probability at least 1− δ,

P (f)− Pn(f) ≤

√
2Var(f) log 1

δ

n
+

2 log 1
δ

3n
. (14)
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Since f takes its values in {0, 1}, Var(f) = P (f)(1− P (f)) ≤ P (f) which shows that when P (f) is small, (14)
is much better than (13).

5.1.1. General Inequalities

Next we to exploit the phenomenon described above to obtain sharper performance bounds for empirical risk
minimization. Note that if we consider the difference between P (f) − Pn(f) uniformly over the class F , the
largest deviations are obtained by functions that have a large variance (i.e., P (f) is close to 1/2). The idea is
to scale each function by dividing it by

√
P (f) so that they all behave in a similar way. Thus, we bound the

quantity

sup
f∈F

Pf − Pnf√
Pf

.

The first step consists in symmetrization of the tail probabilities:

P

{
sup
f∈F

Pf − Pnf√
Pf

≥ t

}
≤ 2P

{
sup
f∈F

P ′nf − Pnf√
(Pnf + P ′nf)/2

≥ t

}
.

Next we introduce Rademacher random variables

· · · = 2E

[
Pσ

{
sup
f∈F

1
n

∑n
i=1 σi(f(X ′

i)− f(Xi))√
(Pnf + P ′nf)/2

≥ t

}]

(where Pσ is the conditional probability, given the Xi and X ′
i). The last step uses tail bounds for individual

functions and a union bound over F(X2n
1 ), where X2n

1 denotes the union of the initial sample Xn
1 and of the

extra symmetrization sample X ′
1, . . . , X

′
n.

Finally, we obtain that for δ ∈ (0, 1), with probability at least 1− δ, all f ∈ F satisfy

Pf − Pnf√
Pf

≤ 2

√
log SF (X2n

1 ) + log 4
δ

n
. (15)

Also, with probability at least 1− δ, for all f ∈ F ,

Pnf − Pf√
Pnf

≤ 2

√
log SF (X2n

1 ) + log 4
δ

n
. (16)

As a consequence, we have that for all s > 0, with probability at least 1− δ,

sup
f∈F

P (f)− Pn(f)
P (f) + Pn(f) + s/2

≤ 2

√
log SF (X2n

1 ) + log 4
δ

sn
(17)

and the same is true if P and Pn are permuted. Another consequence of (15) and (16) with interesting
applications is the following. For all t ∈ (0, 1], with probability at least 1− δ,

∀f ∈ F , Pn(f) ≤ (1− t)P (f) implies P (f) ≤ 4
log SF (X2n

1 ) + log 4
δ

t2n
. (18)

In particular, setting t = 1,

∀f ∈ F , Pn(f) = 0 implies P (f) ≤ 4
log SF (X2n

1 ) + log 4
δ

n
.
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5.1.2. Applications to Empirical Risk Minimization

It is easy to see that, for non-negative numbers A,B,C ≥ 0, the fact that A ≤ B
√
A + C entails A ≤

B2 +B
√
C + C so that we obtain, with probability at least 1− δ, for all f ∈ F ,

P (f) ≤ Pn(f) + 2

√
Pn(f)

log SF (X2n
1 ) + log 4

δ

n
+ 4

log SF (X2n
1 ) + log 4

δ

n
.

If we apply this to the empirical risk minimizer g∗n in a class C of vc dimension V , we obtain, with probability
at least 1− δ,

L(g∗n) ≤ Ln(g∗n) + 2

√
Ln(g∗n)

2V log(n+ 1) + log 4
δ

n
+ 4

2V log(n+ 1) + log 4
δ

n
. (19)

Consider first the extreme situation when there exists a classifier in C which classifies without error. This also
means that for some g′ ∈ C, Y = g′(X) with probability one, a quite restrictive assumption. Nevertheless,
the assumption that infg∈C L(g) = 0 is common in computational learning theory. In such a case, clearly
Ln(g∗n) = 0, so that we get, with probability at least 1− δ,

L(g∗n)− inf
g∈C

L(g) ≤ 4
2V log(n+ 1) + log 4

δ

n
. (20)

The main point here is that the upper bound obtained in this special case is of smaller order of magnitude
than in the general case (O(V lnn/n) as opposed to O

(√
V lnn/n

)
.) One can actually obtain a version which

interpolates between those two cases as follows: For simplicity, assume that there is a classifier g′ in C such
that L(g′) = infg∈C L(g). Then we have

Ln(g∗n) ≤ Ln(g′) = Ln(g′)− L(g′) + L(g′) .

Using Bernstein’s inequality, we get, with probability 1− δ,

Ln(g∗n)− L(g′) ≤

√
2L(g′) log 1

δ

n
+

2 log 1
δ

3n
,

which, together with (19), yields that for some constant C, with probability at least 1− δ,

L(g∗n)− inf
g∈C

L(g) ≤ C

√ inf
g∈C

L(g)
V log n+ log 1

δ

n
+
V log n+ log 1

δ

n

 . (21)

5.2. Noise and Fast Rates

We have seen that in the case where f takes values in {0, 1} there is a nice relationship between the variance of
f (which controls the size of the deviations between P (f) and Pn(f)) and its expectation, namely, Var(f) ≤ P (f).
This is the key property that allows one to obtain faster rates of convergence for L(g∗n)− infg∈C L(g).

In particular, in the ideal situation mentioned above, where infg∈C L(g) = 0, the difference L(g∗n)−infg∈C L(g)
may be much smaller than the difference between L(g∗n) and Ln(g∗n) or even than L(g′)−Ln(g′). This actually
happens in many cases, whenever the distribution satisfies certain conditions. Next we describe such conditions
and show how the finer bounds can be derived.
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The main idea is that, in order to get precise rates for L(g∗n) − infg∈C L(g), we consider functions of the
form 1g(X) 6=Y − 1g′(X) 6=Y where g′ is a classifier minimizing the loss in the class C, that is, such that L(g′) =
infg∈C L(g). Note that functions of this form are no longer non-negative.

To illustrate the basic ideas in the simplest possible setting, consider the case when F is a finite set of N
functions of the form 1g(X) 6=Y − 1g′(X) 6=Y . In addition, we assume that there is a relationship between the
variance and the expectation of the functions is F given by the inequality

Var(f) ≤ c(P (f))α (22)

for some c > 0 and α ∈ (0, 1]. By Bernstein’s inequality and a union bound over the elements of C, we have
that, with probability at least 1− δ, for all f ∈ F ,

P (f) ≤ Pn(f) +

√
2c(P (f))α log N

δ

n
+

4 log N
δ

3n
.

As a consequence, using the fact that Ln(g∗n)− Ln(g′) ≤ 0, we have with probability at least 1− δ,

L(g∗n)− L(g′) ≤

√
2c(L(g∗n)− L(g′))α log N

δ

n
+

4 log N
δ

3n
.

Solving this inequality for L(g∗n)− L(g′) finally gives that with probability at least 1− δ,

L(g∗n)− inf
g∈G

L(g) ≤ C

(
log N

δ

n

) 1
2−α

. (23)

Note that the obtained rate is then faster than n−1/2 whenever α > 0. In particular, for α = 1 we get n−1 as
in the ideal case.

It now remains to show that (22) is a reasonable assumption. As an example, assume that the Bayes classifier
g∗ belongs to the class C (i.e., g′ = g∗) and the a posteriori probability function η is bounded away from 1/2,
that is, there exists a positive constant s such that for all x ∈ X , |2η(x) − 1| > s. In the sequel we will refer
to this condition as Massart’s noise condition. Since |1g(X) 6=Y − 1g∗(X) 6=Y | ≤ 1g(X) 6=g∗(X), Massart’s noise
condition and (1) imply that

Var(f) ≤ E1g(X) 6=g∗(X) ≤
1
s
E|2η(X)− 1|1g(X) 6=g∗(X) =

1
s
(L(g)− L∗) .

Thus (22) holds with c = 1/s and α = 1 which shows that with probability 1− δ,

L(gn)− L∗ ≤ C
log N

δ

sn
. (24)

Thus, the empirical risk minimizer has a significantly better performance than predicted by the results of
the previous section whenever the Bayes classifier is in the class C and the a posteriori probability η stays
away from 1/2. The behavior of η in the vicinity of 1/2 has been known to play an important role in the
difficulty of the classification problem, see [67,229,230]. Roughly speaking, if η has a complex behavior around
the critical threshold 1/2, then one cannot avoid estimating η, which is a typically difficult nonparametric
regression problem. However, the classification problem is significantly easier than regression if η is far from
1/2 with a large probability.
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Tsybakov [209] formulated a useful generalization of Massart’s noise condition that has been adopted by
many authors. Let α ∈ [0, 1]. Then Tsybakov’s condition may be stated by any of the following three equivalent
statements:

(1) ∃β > 0, ∀g ∈ {0, 1}X , E1g(X) 6=g∗(X) ≤ β(L(g)− L∗)α

(2) ∃c > 0, ∀A ⊂ X ,
∫

A

dP (x) ≤ c(
∫

A

|2η(x)− 1|dP (x))α

(3) ∃B > 0, ∀t ≥ 0, P {|2η(X)− 1| ≤ t} ≤ Bt
α

1−α .

We refer to this as Tsybakov’s noise condition. The proof that these statements are equivalent is straightforward,
and we omit it, but we comment on the meaning of these statements. Notice first that α has to be in [0, 1]
because

L(g)− L∗ = E
[
|2η(X)− 1|1g(X) 6=g∗(X)

]
≤ E1g(X) 6=g∗(X) .

Also, when α = 0 these conditions are void, while when α = 1 they imply that there exists an s > 0 such that
|2η(X)− 1| > s almost surely (which is just Massart’s noise condition we considered above).

The most important consequence of these conditions is that they imply a relationship between the variance
and the expectation of functions of the form 1g(X) 6=Y − 1t(X) 6=Y . Indeed, we obtain

E
[
(1g(X) 6=Y − 1g∗(X) 6=Y )2

]
≤ c(L(g)− L∗)α .

This is thus enough to get (23) for a finite class of functions.

5.3. Localization

The purpose of this section is to generalize the simple argument of the previous section to more general
classes C of classifiers. This generalization reveals the importance of the modulus of continuity of the empirical
process as a measure of complexity of the learning problem.

5.3.1. Talagrand’s Inequality

One of the most important recent developments in empirical process theory is a concentration inequality for
the supremum of an empirical process first proved by Talagrand [201] and refined later by various authors. This
inequality is at the heart of many key developments in statistical learning theory. Here we recall the following
version:

Theorem 5.1. Let b > 0 and set F to be a set of functions from X to R. Assume that all functions in F
satisfy Pf − f ≤ b. Then, with probability at least 1− δ,

sup
f∈F

(P (f)− Pn(f)) ≤ 2E

[
sup
f∈F

(P (f)− Pn(f))

]
+

√
2(supf∈F Var(f)) log 1

δ

n
+

4b log 1
δ

3n
.

5.3.2. Localization: informal argument

We first explain informally how Talagrand’s inequality can be used in conjunction with noise conditions to
yield improved results. Start by rewriting the inequality of Theorem 5.1. Letting r = supf∈F Var(f) we have,
with probability at least 1− δ, for all f ∈ F ,

P (f)− Pn(f) ≤ 2E

[
sup

f∈F :Var(f)≤r

(P (f)− Pn(f))

]
+ C

√
r log 1

δ

n
+ C

log 1
δ

n
. (25)

Denote the right-hand side of the above inequality by ψ̃(r). Note that ψ̃ is an increasing nonnegative function.
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Consider the class of functions F = {(x, y) 7→ 1g(x) 6=y − 1g∗(x) 6=y : g ∈ C} and assume, for simplicity, that
g∗ ∈ C and Massart’s noise condition is satisfied with constant s, so that for all f ∈ F , Var(f) ≤ 1

sPf .
Inequality (25) thus implies that, with probability at least 1− δ, all g ∈ C satisfy

L(g)− L∗ ≤ Ln(g)− Ln(g∗) + ψ̃

(
1
s

sup
g∈C

L(g)− L∗
)
.

In particular, we have, with probability at least 1− δ,

L(gn)− L∗ ≤ ψ̃

(
1
s

sup
g∈C

L(g)− L∗
)
.

For the sake of an informal argument, assume that we somehow know beforehand what L(gn) is. Then we can
’apply’ the above inequality to a subclass which only contains functions with error less than that of gn, and
thus we would obtain something like

L(gn)− L∗ ≤ ψ̃

(
1
s

(L(gn)− L∗)
)
.

This indicates that the quantity that should appear as an upper bound of L(gn)−L∗ is something like max{r :
r ≤ ψ̃(r/s)}. We will see that the smallest allowable value is actually the solution of r = ψ̃(r/s). The reason
why this bound can improve the rates is that in many situations, ψ̃(r) is of order

√
r/n. In this case the solution

r∗ of r = ψ̃(r/s) satisfies r∗ ≈ 1/(sn) thus giving a bound of order 1/n for the quantity L(gn)− L∗.
The argument sketched here, once made rigorous, applies to possibly infinite classes with a complexity

measure that captures the size of the empirical process in a small ball (i.e., restricted to functions with small
variance). The next section is offers a detailed argument.

5.3.3. Localization: rigorous argument

Let F = {(x, y) 7→ 1g(x) 6=y − 1g∗(x) 6=y : g ∈ C} and introduce the star-hull of F defined by F∗ = {αf : α ∈
[0, 1], f ∈ F}.

Notice that for f ∈ F or f ∈ F∗, P (f) ≥ 0. Also, denoting by fn the function in F corresponding to the
empirical risk minimizer gn, we have Pn(fn) ≤ 0.

Let T : F → R+ be a function such that for all f ∈ F , Var(f) ≤ T 2(f) and also for α ∈ [0, 1], T (αf) ≤ αT (f).
An important example is T (f) =

√
Pf2.

Introduce the following two functions which characterize the properties of the problem of interest (i.e., the
loss function, the distribution, and the class of functions). The first one is a sort of modulus of continuity of
the Rademacher indexed by the star-hull of F :

ψ(r) = ERn{f ∈ F∗ : T (f) ≤ r} .

The second one is the modulus of continuity of the variance (or rather its upper bound T ) with respect to the
expectation:

w(r) = sup
f∈F∗:Pf≤r

T (f) .

In fact, both of these functions may be replaced by convenient upper bounds. Of course, ψ and w are non-
negative and non-decreasing. Moreover, the map x 7→ ψ(x)/x is non-increasing. Indeed, for α ≥ 1,

ψ(αx) = ERn{f ∈ F∗ : T (f) ≤ αx}
≤ ERn{f ∈ F∗ : T (f/α) ≤ x}
≤ ERn{αf : f ∈ F∗, T (f) ≤ x} = αψ(x) .
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The analysis below uses the additional assumption that x 7→ w(x)/
√
x is also non-increasing. Below we indicate

in which cases this is satisfied.
The main idea is to weight the functions in F in order to have a handle on their variance (which is the key

to making good use of Talagrand’s inequality). To do this, consider

Gr =
{

rf

T (f) ∨ r
: f ∈ F , Pf ≥ r

}
.

We thus apply Talagrand’s inequality to this class of functions. Noticing that Pg − g ≤ 2 and Var(g) ≤ r2 for
g ∈ Gr, we obtain, with probability at least 1− δ,

Pf − Pnf ≤
T (f) ∨ r

r

2E sup
g∈Gr

(Pg − Png) + r

√
2 log 1

δ

n
+

8 log 1
δ

3n

 .

As shown in Section 3, we can upper bound the expectation in the right-hand side by 2ERn(Gr). Notice that
for f ∈ Gr, T (f) ≤ r and also Gr ⊂ F∗ which implies that

Rn(Gr) ≤ Rn{f ∈ F∗ : T (f) ≤ r} .

We thus obtain

Pf − Pnf ≤
T (f) ∨ r

r

4ψ(r) + r

√
2 log 1

δ

n
+

8 log 1
δ

3n

 .

Using the definition of w, this yields

Pf − Pnf ≤
w(Pf) ∨ r

r

4ψ(r) + r

√
2 log 1

δ

n
+

8 log 1
δ

3n

 .

Then either w(Pf) ≤ r which implies Pf ≤ w−1(r) (where w−1(x) def= max{u : w(u) ≤ x}, so that we have
w(w−1(r)) ≤ r and w−1(w(u)) ≥ u), or w(Pf) ≥ r. In this latter case,

Pf ≤ Pnf + w(Pf)

4ψ(r)/r +

√
2 log 1

δ

n
+

8 log 1
δ

3rn

 .

By assumption we have

w(Pf) ≤ r
√
Pf√

w−1(r)
,

so that finally (using the fact that x ≤ A
√
x+B implies x ≤ A2 + 2B),

Pf ≤ 2Pnf +
1

w−1(r)

4ψ(r) + r

√
2 log 1

δ

n
+

8 log 1
δ

3n

2

.

Since we are interested in a function fn such that Pnfn ≤ 0, we obtain that, with probability at least 1− δ,

Pfn ≤ max

w−1(r),
1

w−1(r)

4ψ(r) + r

√
2 log 1

δ

n
+

8 log 1
δ

3n

2
 .
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To minimize the obtained upper bound, we find a value of r which makes the two quantities in the maximum
equal. It is convenient to introduce the value ε∗ as the solution of the fixed-point equation

ε = ψ(w(ε)) .

As ψ(x)/x is non-increasing, we get, for r ≥ w(ε∗), ψ(r) ≤ rε∗/w(ε∗). Hence, we obtain that for all r ≥ w(ε∗),
with probability at least 1− δ,

L(gn)− L∗ ≤ max

w−1(r),
1

w−1(r)

4r
ε∗

w(ε∗)
+ r

√
2 log 1

δ

n
+

8 log 1
δ

3n

2
 . (26)

5.3.4. Consequences

To understand the meaning of (26), consider the case w(x) = cxα/2 with α ≤ 1. Observe that such a choice
of w is possible under Tsybakov’s noise condition. In this case w−1(r) = (r/c)2/α, which leads to an equation
of the form

r2/α = Cr

(ε∗)1−α/2 +

√
log 1

δ

n

+ C ′
log 1

δ

n
.

Clearly, there exists r ≥ w(ε∗) such that this is satisfied and

r ≤ C

(ε∗)1−α/2 +

√
log 1

δ

n


α

2−α

,

so that finally, we have

L(gn)− L∗ ≤ C

(ε∗)1−α/2 +

√
log 1

δ

n


2

2−α

This is of order O(n−1/(2−α)) similarly to (23) provided ε∗ is of order at most O(n−1/(2−α)). For vc classes of
functions, it can be shown (see, e.g., [153] or [21]) that

ψ(x) ≤ Cx

√
V

n
log n

so that
ε∗

w(ε∗)
≤ C

√
V

n
log n .

Thus, we indeed obtain an improved rate and the improvement is possible even if L∗ > 0.
In the special case when α = 1 (i.e., under Massart’s noise condition), one has w(x) =

√
x/s where s is such

that |η − 1/2| ≥ s. Applying (26) thus gives that with probability at least 1− δ,

L(gn)− L∗ ≤ C
V log n+ log 1

δ

ns
,

which, combined with the bound obtained without noise conditions finally gives

L(gn)− L∗ ≤ C

V log n+ log 1
δ

ns
∧

√
V + log 1

δ

n

 .
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5.4. Cost Functions

The refined bounds described in the previous section may be carried over to the analysis of classification
rules based on the empirical minimization of a convex cost functional An(f) = (1/n)

∑n
i=1 φ(−f(Xi)Yi), over a

class F of real-valued functions as is the case in many popular algorithms including certain versions of boosting
and SVM’s. The refined bounds improve the ones described in Section 4.

Most of the argument described in the previous section work in this framework as well, provided the loss
function is Lipschitz and there is a uniform bound on the functions (x, y) 7→ φ(−f(x)y). However, some extra
steps are needed to obtain the results. On the one hand, one relates the excess misclassification error L(f)−L∗
to the excess loss A(f)−A∗. Zhang’s lemma (11) may be improved under Tsybakov’s noise condition to yield

L(f)− L(f∗) ≤
(

2sc

β1−s
(A(f)−A∗)

)1/(s−sα+α)

.

On the other hand, considering the class of functions

M = {mf (x, y) = φ(−yf(x))− φ(−yf∗(x)) : f ∈ F} ,

one has to relate Var(mf ) to P (mf ), and finally compute the modulus of continuity of the Rademacher process
indexed by M. We omit the often somewhat technical details and direct the reader to the references for the
detailed arguments.

As an illustrative example recall the case when F = Fλ is defined as in (7). Then, the empirical minimizer
fn of the cost functional An(f) satisfies, with probability at least 1− δ,

A(fn)−A∗ ≤ C

(
n−

1
2 ·

V +2
V +1 +

log(1/δ)
n

)
where the constant C depends on the cost functional and the vc dimension V of the base class C. Combining
this with the above improvement of Zhang’s lemma, one obtains significant improvements of the performance
bound (12).

5.5. Minimax Lower Bounds

The purpose of this section is to investigate how good the bounds obtained in the previous sections for
empirical risk minimization are. We seek answers for the following questions: Are these upper bounds (at least
up to the order of magnitude) tight? Is there a much better way of selecting a classifier than minimizing the
empirical error?

Let us formulate exactly what we are interested in. Let C be a class of decision functions g : Rd → {0, 1}.
The training sequence Dn = ((X1, Y1), . . ., (Xn, Yn)) is used to select the classifier gn(X) = gn(X,Dn) from
C, where the selection is based on the data Dn. We emphasize here that gn can be an arbitrary function of
the data, we do not restrict our attention to empirical error minimization, where gn is a classifier in C that
minimizes the number errors committed on the data Dn.

To make the exposition simpler, we only consider classes of functions (where the target is supposed to lie)
with finite vc dimension. As before, we measure the performance of the selected classifier by the difference
between the error probability L(gn) of the selected classifier and that of the best in the class, LC = infg∈C L(g).
In particular, we seek lower bounds for

supEL(gn)− LC,

where the supremum is taken over all possible distributions of the pair (X,Y ). A lower bound for this quantity
means that no matter what our method of picking a rule from C is, we may face a distribution such that our
method performs worse than the bound.
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Actually, we investigate a stronger problem, in that the supremum is taken over all distributions with LC
kept at a fixed value between zero and 1/2. We will see that the bounds depend on n, V the vc dimension of
C, and LC jointly. As it turns out, the situations for LC > 0 and LC = 0 are quite different. Also, the fact that
the noise is controlled (with Massart’s or Tsybakov’s noise conditions) has an important influence.

Integrating the deviation inequalities such as (21), we have that for any class C of classifiers with vc dimension
V , a classifier gn minimizing the empirical risk satisfies

EL(gn)− LC ≤ O

(√
LCVC log n

n
+
VC log n

n

)
,

and also

EL(gn)− LC ≤ O

(√
VC

n

)
.

Let C be a class of classifiers with vc dimension V . Let P be the set of all distributions of the pair (X,Y )
for which LC = 0. Then, for every discrimination rule gn based upon X1, Y1, . . . , Xn, Yn, and n ≥ V − 1,

sup
P∈P

EL(gn) ≥ V − 1
2en

(
1− 1

n

)
. (27)

This can be generalized as follows. Let C be a class of discrimination functions with vc dimension V ≥ 2.
Let P be the set of all probability distributions of the pair (X,Y ) for which for fixed L ∈ (0, 1/2),

L = inf
g∈C

L(g) .

Then, for every discrimination rule gn based upon X1, Y1, . . . , Xn, Yn,

sup
P∈P

E(L(gn)− L) ≥
√
L(V − 1)

24n
e−8 if n ≥ V − 1

2L
max(9, 1/(1− 2L)2) . (28)

Under Massart’s noise condition with parameter s, we have seen that the rate can be improved and that we
essentially have, when gn is the empirical error minimizer,

E(L(gn)− L∗) ≤ C

(√
V

n
∧ V log n

ns

)
,

no matter what L∗ is, provided L∗ = LC. There also exist lower bounds under these circumstances.
Let C be a class of classifiers with vc dimension V . Let P be the set of all probability distributions of the

pair (X,Y ) for which
inf
g∈C

L(g) = L∗ ,

and Massart’s noise condition is satisfied, that is, |η(X) − 1/2| ≥ s almost surely where s > 0 is a constant.
Then, for every discrimination rule gn based upon X1, Y1, . . . , Xn, Yn,

sup
P∈P

E(L(gn)− L∗) ≥ C

(√
V

n
∧ V

ns

)
. (29)

Thus, there is a small gap between upper and lower bounds (essentially of a logarithmic factor). This gap can
be reduced when the class of functions is rich enough, where richness means that there exists some d such that
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all dichotomies of size d can be realized by functions in the class. When C is such a class, under the above
conditions, one can improve (29) to get

sup
P
E(L(gn)− L∗) ≥ K(1− h)

d

ns

(
1 + log

ns2

d

)
if s ≥

√
d/n .

Bibliographical remarks. Inequality (13) is known as Hoeffding’s inequality [104], while (14) is referred
to as Bernstein’s inequality [30]. The constants shown here in Bernstein’s inequality actually follow from an
inequality due to Bennett [29]. The results (15),(16) and their corollaries (20),(21) are due to Vapnik and
Chervonenkis [222, 223]. The proof sketched here is due to Anthony and Shawe-Taylor [10]. Regarding the
corollaries of this result, (17) is due to Pollard [174] and (18) is due to Haussler [100]. The fact that the
variance can be related to the expectation and that this can be used to get improved rate has been known for
a long time in the context of regression function estimation or other statistical problems. Asymptotic results
based on this were obtained for example by van de Geer [212]. Birgé and Massart [32] and Lee, Bartlett
and Williamson [127] proved exponential inequalities for regression. The fact that that this phenomenon also
occurs in the context of classification, under conditions on the noise has been pointed out by Massart [154] and
Mammen and Tsybakov [144].

Talagrand’s inequality for empirical processes first appeared in [201], for various improvements see Ledoux
[125], Massart [152], Rio [176]. The version presented in Theorem 5.1 is an application of the refinement given
by Bousquet [43]. Variations on the theme and detailed proofs appeared in [44].

Several methods have been developed in order to obtain sharp rates for empirical error minimization (or
M -estimation). A classical trick is the so-called peeling technique where the idea is to cut the class of interest
into several pieces (according to the variance of the functions) and to apply deviation inequalities separately to
each sub-class. This technique is used, for example, by van de Geer [212, 213, 215]. Another approach consists
in weighting the class and was used by Vapnik and Chervonenkis [222] in the special case of binary valued
functions and extended by Pollard [174], for example. Combining this approach with concentration inequalities
was proposed by Massart [154] and this is the approach we have taken here.

The fixed point of the modulus of continuity of the empirical process has been known to play a role in
the asymptotic behavior of M -estimators. More recently non-asymptotic deviation inequalities involving this
quantity were obtained, essentially in the work of Massart [154] and Koltchinskii and Panchenko [119]. Both
approaches use a version of the peeling technique, but the one of Massart uses in addition a weighting approach.
More recently, Mendelson [165] obtained similar results using a weighting technique but a peeling into two
subclasses only. The main ingredient was the introduction of the star-hull of the class (as we do it here). This
approach was further extended in [21] were the peeling and star-hull approach are compared.

Empirical estimates of the fixed point of type ε∗ were studied by Koltchinskii and Panchenko [119] in the
zero error case. In a related work, Lugosi and Wegkamp [140] obtain bounds in terms of empirically estimated
localized Rademacher complexities without noise conditions. In their approach, the complexity of a subclass
of C containing only classifiers with a small empirical risk is used to obtain sharper bounds. A general result,
applicable under noise conditions, was proven by Bartlett, Bousquet and Mendelson [21].

Replacing the inequality by an equality in the definition of ψ (thus making the quantity smaller) can yield
better rates for certain classes as shown by Bartlett and Mendelson [22]. Applications of results like (26) to
classification with vc classes of functions were investigated by Massart and Nédélec [156].

Properties of convex loss functions were investigated by Lin [132], Steinwart [195], and Zhang [232]. The
improvement of Zhang’s lemma under Tsybakov’s noise condition is due to Bartlett, Jordan and McAuliffe [24]
who establish more general results. For a further improvement we refer to Blanchard, Lugosi, and Vayatis [36].
The cited improved rates of convergence for A(fn) − A∗ is also taken from [36] which is based on bounds
derived by Blanchard, Bousquet, and Massart [35]. [35] also investigates the special cost function (1+x)+ under
Massart’s noise condition, see also Bartlett, Jordan and McAuliffe [24], Steinwart [185].
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Massart [154] gives a version of (26) for the case w(r) = c
√
r and arbitrary loss functions which is extended

for general w in Massart and Nédélec [156] and Bartlett, Jordan and McAuliffe [24]. Bartlett, Bousquet and
Mendelson [21] give an empirical version of (26) in the case w(r) = c

√
r.

The lower bound (27) was proved by Vapnik and Chervonenkis [223], see also Haussler, Littlestone, and
Warmuth [102], Blumer, Ehrenfeucht, Haussler, and Warmuth [37]. (28) is due to Devroye and Lugosi [68],
see also Simon [189] for related results. The lower bounds under conditions on the noise are due to Massart
and Nédélec [156]. Similar results under Tsybakov’s noise condition for large classes of functions (i.e., with
polynomial growth of entropy) are given in the work of Mammen and Tsybakov [144] and Tsybakov [209].
Other minimax results based on growth rate of entropy numbers of the class of function are obtained in the
context of classification by Yang [229, 230]. We notice that the distribution which achieves the supremum in
the lower bounds typically depends on the sample size. It is thus reasonable to require the lower bounds to be
derived in such a way that P cannot depend on the sample size. Such results are called strong minimax lower
bounds and were investigated by Antos and Lugosi [12] and Schuurmans [183].

6. PAC-Bayesian Bounds

We now describe the so-called PAC-Bayesian approach to get error bounds. The distinctive feature of this
approach is that one assumes that the class C is endowed with a fixed probability measure π (called the prior)
and that the output of the classification algorithm is not a single function but rather a probability distribution
ρ over the class C (called the posterior).

Given this probability distribution ρ, the error is measured under expectation with respect to ρ. In other
words, the quantities of interest are ρL(g) def=

∫
L(g)dρ(g) and ρLn(g) def=

∫
Ln(g)dρ(g). This models classifiers

whose output is randomized, which means that for x ∈ X , the prediction at x is a random variable taking
values in {0, 1} and being equal to one with probability ρg(x) def=

∫
g(x)dρ(g). It is important to notice that ρ

is allowed to depend on the training data.
We first show how to get results relating ρL(g) and ρLn(g) using basic techniques and deviation inequalities.

A preliminary remark is that if ρ does not depend on the training sample, then ρLn(g) is simply a sum of
independent random variables whose expectation is ρL(g) so that Hoeffding’s inequality applies trivially.

So the difficulty comes when ρ depends on the data. By Hoeffding’s inequality, for the class F = {1g(x) 6=y :
g ∈ C}, one easily gets that for each fixed f ∈ F ,

P

{
∃f ∈ F : P (f)− Pn(f) ≥

√
log(1/δ)

2n

}
≤ δ . (30)

One can then obtain a weighted union bound as follows

P

{
∃f ∈ F : P (f)− Pn(f) ≥

√
log(1/(π(f)δ))

2n

}
≤

∑
f∈F

P

{
∃f ∈ F : P (f)− Pn(f) ≥

√
log(1/(π(f)δ))

2n

}
≤

∑
f∈F

π(f)δ = δ ,

so that we obtain that with probability at least 1− δ,

∀f ∈ F , P (f)− Pn(f) ≤
√

log(1/π(f)) + log(1/δ)
2n

. (31)

It is interesting to notice that now the bound depends on the actual function f being considered and not just on
the set F . Now, observe that (∃f ∈ F , I(f) ≥ 0) ⇔ (∃ρ, ρI(f) ≥ 0) where ρ denotes an arbitrary probability
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measure on F so that we can take the expectation of (31) with respect to ρ and use Jensen’s inequality. This
gives with probability at least 1− δ,

∀ρ, ρ(P (f)− Pn(f)) ≤
√
K(ρ, π) +H(ρ) + log(1/δ)

2n
.

Rewriting this in terms of the class C, we get that, with probability at least 1− δ,

∀ρ, ρL(g)− ρLn(g) ≤
√
K(ρ, π) +H(ρ) + log(1/δ)

2n
. (32)

The left-hand side is the difference between true and empirical errors of a randomized classifier which uses ρ
as weights for choosing the decision function (independently of the data). On the right-hand side the entropy
H of the distribution ρ (which is small when ρ is concentrated on a few functions) and the Kullback-Leibler
divergence K between ρ and the prior distribution π appear.

It turns out that the entropy term is not necessary. The PAC-Bayes bound is a refined version of the
above which is proved using convex duality of the relative entropy. The starting point is the following inequality
which follows from convexity properties of the Kullback-Leibler divergence (or relative entropy): for any random
variable Xf ,

ρXf ≤ inf
λ>0

1
λ

(
log πeλXf +K(ρ, π)

)
.

This inequality is applied to the random variable Xf = (P (f)−Pn(f))2+ and this means that we have to upper
bound πeλ(P (f)−Pn(f))2+ . We use Markov’s inequality and Fubini’s theorem to get

P
{
πeλXf ≥ ε

}
≤ ε−1πEeλXf .

Now for a given f ∈ F ,

Eeλ(P (f)−Pn(f))2+ = 1 +
∫ ∞

1

P

{
eλ(P (f)−Pn(f))2+ ≥ t

}
dt

= 1 +
∫ ∞

0

P
{
λ(P (f)− Pn(f))2+ ≥ t

}
etdt

= 1 +
∫ ∞

0

P

{
P (f)− Pn(f) ≥

√
t/λ
}
etdt

≤ 1 +
∫ ∞

0

e−2nt/λ+tdt = 2n

where we have chosen λ = 2n− 1 in the last step. With this choice of λ we obtain

P
{
πeλXf ≥ ε

}
≤ 2n

ε
.

Choosing ε = 2nδ−1, we finally obtain that with probability at least 1− δ,

1
2n− 1

log πeλ(P (f)−Pn(f))2+ ≤ 1
2n− 1

log(2n/δ) .

The resulting bound has the following form. With probability at least 1− δ,

∀ρ, ρL(g)− ρLn(g) ≤
√
K(ρ, π) + log(2n) + log(1/δ)

2n− 1
. (33)
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This should be compared to (32). The main difference is that the entropy of ρ has disappeared and we now have
a logarithmic factor instead (which is usually dominated by the other terms). To some extent, one can consider
that the PAC-Bayes bound is a refined union bound where the gain happens when ρ is not concentrated on a
single function (or more precisely ρ has entropy larger than log n).

A natural question is whether one can take advantage of PAC-Bayesian bounds to obtain bounds for deter-
ministic classifiers (returning a single function and not a distribution) but this is not possible with (33) when
the space F is uncountable. Indeed, the main drawback of PAC-Bayesian bounds is that the complexity term
blows up when ρ is concentrated on a single function, which corresponds to the deterministic case. Hence, they
cannot be used directly to recover bounds of the type discussed in previous sections. One way to avoid this
problem is to allow the prior to depend on the data. In that case, one can work conditionally on the data (using
a double sample trick) and in certain circumstances, the coordinate projection of the class of functions is finite
so that the complexity term remains bounded.

Another approach to bridge the gap between the deterministic and randomized cases is to consider successive
approximating sets (similar to ε-nets) of the class of functions and to apply PAC-Bayesian bounds to each of
them. This goes in the direction of chaining or generic chaining.

Bibliographical remarks. The PAC-Bayesian bound (33) was derived by McAllester [157] and later extended
in [158, 159]. Langford and Seeger [123] gave an easier proof and some refinements. The symmetrization and
conditioning approach was first suggested by Catoni and studied in [53–55]. The chaining idea appears in the
work of Kolmogorov [115, 116] and was further developed by Dudley [73] and Pollard [173]. It was generalized
by Talagrand [204] and a detailed account of recent developments is given in [208]. The chaining approach to
PAC-Bayesian bounds appears in Audibert and Bousquet [14].

7. Stability

The idea of stability is to directly consider the quantity of interest when one studies the error of a given
algorithm. More precisely, given a classifier gn, our aim is to bound L(gn)− Ln(gn).

Under certain circumstances, this random quantity is concentrated around its expectation. In that case, one
directly obtains a bound from a concentration inequality.

A simple example of such an approach is the following. We consider the case of real-valued classifiers, when
the classifier gn is obtained by thresholding at zero a real-valued function fn : X → R. Given a set of data
(X1, Y1), . . . , (Xn, Yn), let us denote by f i

n the function that is learned from the data after replacing (Xi, Yi) by
an arbitrary pair (x′i, y

′
i). Let φ be a cost function as defined in Section 4 and assume that for any set of data,

any replacement pair and any x, y,

|φ(−yfn(x))− φ(−yf i
n(x))| ≤ β ,

for some β > 0 and that φ(−yf(x)) is bounded by some constant M > 0. This is called the uniform stability
condition. Under this condition, it is easy to see that

E [A(fn)−An(fn)] ≤ β

(where the functionals A and An are defined in Section 4). Moreover, by the bounded difference inequality, one
easily obtains that with probability at least 1− δ,

A(fn)−An(fn) ≤ β + (2nβ +M)

√
log(1/δ)

2n
.

Of course, to be of interest, this bound has to be such that β is a non-increasing function of n such that
√
nβ → 0

as n→∞.
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This turns out to be the case for regularization-based algorithms such as the support vector machine. Hence
one can obtain error bounds for such algorithms using the stability approach. We omit the details and refer the
interested reader to the bibliographical remarks for further reading.

Bibliographical remarks. The idea of using stability of a learning algorithm to obtain error bounds was
first exploited by Devroye and Wagner [69, 70]. Kearns and Ron [109] investigated it further and introduced
formally several measures of stability. Bousquet and Elisseeff [45] obtained exponential bounds under restrictive
conditions on the algorithm, using the notion of uniform stability. These conditions were relaxed by Kutin and
Niyogi [122]. The link between stability and consistency of the empirical error minimizer was studied by Poggio,
Rifkin, Mukherjee and Niyogi [172].

8. Model selection

8.1. Basic concepts

When facing a concrete classification problem, choosing the right set C of possible classifiers is a key to
success. If C is so large that it can approximate arbitrarily well any measurable classifier, then C is susceptible
to overfitting and is not suitable for empirical risk minimization, or empirical φ-risk minimization. On the other
hand, if C is a small class, for example a class with finite vc dimension, C will be unable to approximate in any
reasonable sense (L1(P ) or Hausdorff distance) a large set of measurable classification rules. Such a dilemma is
by no way specific to classification problems, similar phenomena occur in regression problems.

In regression estimation problems one sometimes considers a large set S of possible targets like Sobolev spaces,
and decomposes it into classes (Sθ)θ∈Θ defined by some smoothness criteria (e.g., by bounds on Sobolev or Besov
norms). In non-parametric regression problems with additive noise under known integrability properties, the
nuisance parameter is the smoothness of the target function. Note that in classification, a target is defined
by a joint distribution on X × {0, 1}. The target defines the Bayes classifier g∗, but the same Bayes classifier
may be associated with many different targets. In classification problems, the smoothness criteria should
reflect the complexity of the Bayes classifier and perhaps margin conditions (see Section 5.3). Thus, model a
theory of model selection for classification analog of that developed for regression requires a deep understanding
of approximation properties of characteristic functions of sets. Unfortunately, as of writing this survey, no
approximation theory tailored to the needs of classification has reached the level of maturity of approximation
theory in functional analysis.

Assume that S = ∪θ∈ΘSθ, and that for each θ ∈ Θ, for each sample size n, there exists an integer k(θ) such
that g∗n,k minimizes the worst-case excess risk, that is,

sup
P∈Sθ

E

[
L(g∗n,k(θ))− L∗

]
= min

k∈N
sup

P∈Sθ

E
[
L(g∗n,k)− L∗

]
.

An inference procedure outputting a classifier g̃n is said to be adaptive with respect to S if there exists a bounded
sequence Cn(θ) such that for all P ∈ S,

E [L(g̃n)− L∗] ≤ Cn(θ)E
[
L(g∗n,k(θ))− L∗

]
.

If, moreover, the sequence Cn(θ) converges to 1, then the model selection procedure is said to enjoy exact
asymptotic adaptation in the minimax sense. Inference procedures that satisfy such a property in regression
problems have been known for a while for large sets of target functions. However, the classification problem
appears to be significantly more complex as it is detailed below.

Even in the regression estimation framework, other, weaker, definitions of adaptivity have been considered. If
`(n) denotes a slowly varying function (like, e.g., logk(n) for some positive k), an inference procedure outputting
g̃n is said to be adaptive up to `(n) with respect to S if there exists a bounded sequence Cn(θ) such that, for
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all P ∈ S,

E [L(g̃n)− L∗] ≤ Cn(θ)`(n)E
[
L(g∗n,k(θ))− L∗

]
.

Different notions of adaptivity in well-understood frameworks, provide us with guidelines about the possible
ways to tackle adaptivity issues in classification.

A closely related model selection method is based on Vapnik’s structural risk minimization principle. Here
one considers a possibly infinite collection of classes of classifiers C1,C2, . . . ,.

For each model Ck, let g∗n,k minimize the empirical classification risk over Ck. The model selection problem
may be stated as follows: given the dataDn, select a good hypothesis g∗n,k among the minimizers of empirical risk.
Now it remains to build a sound decision selection procedure, to assess this procedure on real-life applications,
and to prove its efficiency in well-defined theoretical settings. A lot of work remains to be done to reconcile
theory and practice.

Recent approaches to model selection in classification problems are shaped by the acknowledged fact that the
behavior of excess risk does not depend entirely on the Bayes classifier g∗ and on the class of possible classifiers
C, but also on the relation between excess risk and the variance of the empirical process indexed by C which is
often governed by noise conditions, see Section 5.3.

Bibliographical remarks. Early work on model selection in the context of regression or prediction with
squared loss can be found in Mallows [143], Akaike [5]. Mallows introduced the Cp criterion in [143]. Grenander
[97] discusses the use of regularization in statistical inference. Vapnik and Chervonenkis [223] proposed the
structural risk minimization approach to model selection in classification, see also [141], [219–221]. This has
been refined to allow random penalties estimated from the training data by Lugosi and Nobel [138], see also
Bartlett, Boucheron, and Lugosi [20], Lugosi and Wegkamp [140]. A general and influential approach to non-
parametric inference through penalty-based model selection is described in Barron, Birgé and Massart [16],
see also Birgé and Massart [33], [34]. These papers provide a profound account of the use of sharp bounds
on the excess risk for model selection via penalization. In particular, these papers pioneered the use of sharp
concentration inequalities in solving model selection problems, see also [15,52] for illustrations in regression and
density estimation.

A recent account of inference methods in non-parametric settings can be found in Tsybakov [211].
The search for simplicity as a model selection method has often been successful in density estimation and

data compression problems. It should be noted that when logarithmic loss functions are used, Ockham’s razor
provides the basis of a sound bias-variance decomposition. Model selection for data compression or density
estimation relatively to the Kullback-Leibler loss was investigated by Schwarz [184] and Rissanen [178], the
former introduced the bic criterion (Bayesian Information Criterion), the latter introduced the mdl criterion
(Minimum Description Length Criterion), see also Kieffer [112] for a general perspective on the related problem
of code-based model selection. The recent papers by Csiszár and Shields [63] and Csiszár [62] emphasize the
relevance of tight non-asymptotic exponential inequalities on the excess risk when investigating the asymptotic
consistency of bic and mdl. Barron [17], Barron and Cover [19], [18] investigate model selection in the framework
of discrete models for density estimation and regression.

Kernel methods and nearest-neighbor rules have been used to design universal learning rules and in some
sense bypass the model selection problem. We refer to Devroye, Györfi and Lugosi [67] for exposition and
references.

Hall [98] and many other authors use resampling techniques to perform model selection.

8.2. Naive model selection through penalization

We start with describing a naive approach that uses ideas exposed at the first part of this survey. Penalty-
based model selection chooses the model k̂ that minimizes

Ln(g∗n,k) + pen(n, k) ,
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among all models (Ck)k∈N. Denote the selected model by k̂. In other words, the selected classifier is g∗
n,k̂

.
Throughout this section, pen(n, k) is a positive, possibly data-dependent, quantity. The intuition behind using
penalties is that as large models tend to overfit, and are thus prone to producing excessively small empirical
risks, they should be penalized. Determining the right amount of penalization s crucial to the success of the
method of minimization of penalized empirical risk.

As usual, our aim is to get an upper-bound on L(g∗
n,k̂

) − L∗. From the definition of the selection criterion,
we have for all k,

L(g∗
n,k̂

) − L∗ ≤ L(g∗n,k) − L∗ −
(
L(g∗n,k)− Ln(g∗n,k)− pen(n, k)

)
+
(
L(g∗

n,k̂
)− Ln(g∗

n,k̂
)− pen(n, k̂)

)
. (34)

Taking expectations, we get

E

[
L(g∗

n,k̂
)− L∗

]
≤ E

[
L(g∗n,k)− L∗

]
−E

[(
L(g∗n,k)− Ln(g∗n,k)

)
+ pen(n, k)

]
+E

[(
L(g∗

n,k̂
)− Ln(g∗

n,k̂
)− pen(n, k̂)

)]
≤ E

[
L(g∗n,k)− L∗ + pen(n, k)

]
+E

[
sup

k

(
L(g∗n,k)− Ln(g∗n,k)− pen(n, k)

)]
≤ E

[
L(g∗n,k)− L∗ + pen(n, k)

]
+E

[
sup

k

(
sup
g∈Ck

(L(g)− Ln(g))− pen(n, k)
)]

.

In view of this inequality, it is natural to look for penalties pen(n, k) such that both

sup
k

(
sup
g∈Ck

(L(g)− Ln(g))− pen(n, k)
)

and (pen(n, k)) remain as small as possible. Recalling that
(
supg∈Ck

(L(g)− Ln(g))
)

is sharply concentrated
around its mean, it is sensible to choose

pen(n, k) = E

[
sup
g∈Ck

(L(g)− Ln(g))
]

+

√
log k
n

.

Indeed, by the union bound,

E

[
sup

k

(
sup
g∈Ck

(L(g)− Ln(g))− pen(n, k)
)]

≤
∑

k

E

[(
sup
g∈Ck

(L(g)− Ln(g))− pen(n, k)
)

+

]
.

Using the bounded differences inequality for each k,

P

{
sup
g∈Ck

(L(g)− Ln(g)) ≥ pen(n, k) + δ

}
≤ exp

−2n

(√
log k
n

+ δ

)2
 ≤ 1

k2
exp(−2nδ2)

which implies

E

[(
sup
g∈Ck

(L(g)− Ln(g))− pen(n, k)
)

+

]
≤ 1
k2

√
1
2n

.

Summing over all k, we get

E

[
sup

k

(
sup
g∈Ck

(L(g)− Ln(g))− pen(n, k)
)]

≤
√

2
n
.
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Hence, this elementary reasoning leads to the oracle inequality

E

[
L(g∗

n,k̂
)− L∗

]
≤ inf

k

(
L(g∗k)− L∗ + 3E

[
sup
g∈Ck

(L(g)− Ln(g))
]

+

√
log k
n

)
+

√
2
n
.

Note that the penalty suggested above is unrealistic as it assumes the knowledge of the true underlying dis-
tribution. Therefore, it should be replaced by either a distribution-free penalty or a data-dependent quantity.
Distribution-free penalties necessarily lead to highly conservative bounds. In recent years, several data-driven
penalization procedures have been proposed. Such procedures are motivated according to computational or
to statistical arguments. Here we only focus on statistical arguments. Rademacher averages, as presented in
Section 3 are by now regarded as a standard basis for designing data-driven penalties.

In the sequel Fk = {1g(x) 6=y : g ∈ Ck} denotes the loss class associated with Ck. Let pen(n, k) be defined as

pen(n, k) = 3Rn(Fk) +

√
log k
n

+
18 log k
n

. (35)

Rademacher averages are sharply concentrated as they not only satisfy the bounded-difference inequality, but
also the “Bernstein-like” inequalities

Var (Rn(Fk)) ≤ 1
n
E [Rn(Fk)]

P {Rn(Fk) ≤ E [Rn(Fk)]− ε} ≤ exp
(
− nε2

2E[Rn(Fk)]

)
.

This sharp tail-behavior can be exploited as follows:

P

{
sup
g∈Ck

(L(g)− Ln(g)) ≥ pen(n, k) + 2δ
}

≤ P

{
sup
g∈Ck

(L(g)− Ln(g)) ≥ E
[

sup
g∈Ck

(L(g)− Ln(g))
]

+

√
log k
n

+ δ

}

+P
{
Rn(Fk) ≤ 2

3
E [Rn(Fk)]− 18 log k

3n
− δ

3

}

≤ 1
k2

exp(−2nδ2) + exp

−n
(
E [Rn(Fk)/3] + 18 log k

3n + δ
3

)2

2E [Rn(Fk)]


1
k2

exp(−2nδ2) + exp

−n
(

18 log k
3n + δ

3

)
3


≤ 1

k2
exp(−2nδ2) +

1
k2

exp
(
−nδ

9

)
.

Integrating by parts and summing with respect to k leads to the oracle inequality

E

[
L(g∗

n,k̂
)− L∗

]
≤ inf

k

(
L(g∗k)− L∗ + 3E [Rn(Fk)] +

√
log k
n

+
18k
log n

)
+

√
2π
n

+
18
n
. (36)

Hence, the price to pay for using data-dependent penalties is negligible with compared to the size of the penalty
used in the ideal distribution-dependent scenario. This is due to the fact that the typical fluctuations of
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Rademacher averages are much smaller than the supremum of the empirical risk. As a matter of fact, using
the Bernstein-like inequality to handle the fluctuations of Rademacher averages is an overkill. We could have
simply used the bounded differences inequality in order to deal with the fluctuations of Rademacher averages.
Nevertheless, this overkill allows us to point out that the naive way of analyzing penalization and calibrating
penalties does not lead to very satisfactory oracle inequalities. Indeed, if noise conditions were favorable, and if
we were told in advance which is the right model, the excess risk should decrease like 1

n . The penalty defined

by (35) may not be of the same order of magnitude as E
[
L
(
g∗n,k − L∗k

)]
.

Bibliographical remarks. Data-dependent penalties were suggested by Lugosi and Nobel [138], and in
the closely related “luckiness” framework introduced by Shawe-Taylor, Bartlett, Williamson, and Anthony
[186]. Penalization based on Rademacher averages was suggested by Bartlett, Boucheron, and Lugosi [20] and
Koltchinskii [117]. For refinements and further development, see also Lugosi and Wegkamp [140], Freund [87],
Herbrich and Williamson [103], Mendelson and Philips [166], Bartlett, Bousquet and Mendelson [21], Bousquet,
Koltchinskii and Panchenko [46]. Koltchinskii and Panchenko [119], Lozano [135].

Kearns, Mansour, Ng, and Ron [108], provides an early attempt to compare model selection criteria originat-
ing in structural risk minimization theory, mdl, and the performance of hold-out estimates of overfitting. This
paper introduced the interval problem where empirical risk minimization and model selection can be performed
in a computationally efficient way. The latter problem has also been investigated in [20,91,135].

The proof that Rademacher averages, empirical vc-entropy and empirical vc-dimension are sharply concen-
trated around their mean can be found in [41] and [42].

Lugosi and Wegkamp [140] propose a refined penalization scheme based on localized Rademacher complexities
that reconciles bounds presented in this section and the results described by Koltchinskii and Panchenko [119]
when the optimal risk is null.

Fromont [91] shows that Rademacher averages are actually a special case of weighted bootstrap estimates of
the supremum of empirical processes, and shows how a large collection of variants of bootstrap estimates can
be used in model selection for classification. We refer to Giné [95] and Efron et al. [80–82] for basic result on
the bootstrap.

8.3. Adaptive model selection under Massart’s noise conditions

In Section 5 we saw that upper bounding L(g∗n,k)−L(g∗k) by 2 supg∈Ck
(L(g)− Ln(g)) does not lead to sharp

bounds. Sharper bounds could be obtained by bounding the excess risk by the increment of a centered empirical
process. This line of reasoning becomes relevant when dealing with model selection problems in classification.
It can be summarized in the following way:

(1) The difference between the risk of the selected classifier and the risk of any contender can be upper
bounded by the increment of a suitable empirical process and the difference between the penalties
associated to the selected models and its contender. This upper bound holds for any sample, and
follows directly from the definition of the model selection procedure.

(2) With overwhelming probability, the increment of the centered empirical process can be upper bounded
by an expression involving the excess-risk of the selected classifier and the excess risk of the contender.
This leads to an inequality involving the excess risk of the selected classifier and the excess risk of the
contender that holds with high probability. The tools that had been successfully used to establish sharp
rates of convergence in Section 5.3, that is, Talagrand’s concentration inequality and the peeling device,
prove efficient again.

(3) The oracle inequality just follows by taking advantage of the choice of the penalties and taking expec-
tations.
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Let us now carry out the first step of this program. Let c denote a positive real number. For any class Ck,

L
(
g∗

n,k̂

)
− L∗ = (1 + c)

(
Ln

(
g∗n,k

)
− Ln(g∗) + pen(n, k̂)

)
+
(
L
(
g∗

n,k̂

)
− (1 + c)Ln

(
g∗

n,k̂

)
− L∗ + (1 + c)Ln(g∗)− (1 + c)pen(n, k̂)

)
≤ (1 + c) (Ln (g∗k)− Ln(g∗) + pen(n, k))

+ sup
k′

(
L
(
g∗n,k′

)
− (1 + c)Ln

(
g∗n,k′

)
− L(g∗) + (1 + c)Ln(g∗)− (1 + c)pen(n, k′)

)
(37)

(by the definition of k̂.

Note that (37) differs from (34) in two respects: the last term on the right-hand side is the increment of an
empirical process instead of a supremum, and an offset factor (1 + c) has been introduced. The latter may be
taken arbitrarily close to 1, it will show up in oracle inequalities and seems to be unavoidable if small penalties
(that is penalties that are of smaller order than 1/

√
n) are to be chosen. Now, taking expectations on both

sides,

E

[
L
(
g∗

n,k̂

)
− L∗

]
≤ (1 + c) (L(g∗k)− L∗ +E [pen(n, k)])

+E
[
sup
k′

(
L
(
g∗n,k′

)
− (1 + c)Ln

(
g∗n,k′

)
− L(g∗) + (1 + c)Ln(g∗)− (1 + c)pen(n, k′)

)]
≤ (1 + c) (L(g∗k)− L∗ +E [pen(n, k)])

+E

[∑
k′

(
L
(
g∗n,k′

)
− (1 + c)Ln

(
g∗n,k′

)
− L(g∗) + (1 + c)Ln(g∗)− (1 + c)pen(n, k′)

)]
. (38)

Relation (38) looks like (34), but the two relations differ to the same extent as Section 3 and Section 5 differ. (38)
now suggests what kind of penalties should and could be used in order to achieve some kind of non-asymptotic
adaptivity. Indeed, E [pen(n, k)] should be at least of the order of E

[
L(g∗n,k)− L(g∗)

]
, that is, of the order of

the excess risk in the k-th model.
We will have to check whether this is enough to ensure that the last summand remains small with respect

to pen(n, k). In order to use the union bound, a term of order (log k)/n, will be incorporated into pen(n, k). In
the next paragraph we check that, under fixed noise conditions, it is possible to define distribution-dependent
penalties that lead to some kind of adaptivity. Finally, the construction of the corresponding data-dependent
penalties will be sketched.

8.3.1. Model selection under Massart’s noise conditions

For the sake of simplicity, we work out the main ideas first under Massart’s noise conditions. Recall that
under such, conditions

w(r) = sup
g:L(g)≤L∗+r

√
Var

(
1g(X) 6=Y − 1g∗(X) 6=Y

)
≤
√

1
h

(
L(g)− L∗

)
.

Such conditions are enforced when 1/ |1− 2η(·)| is upper bounded by 1/h.
Just as we did for the naive model selection procedure, we proceed in two steps:
(1) definition of sensible distribution-dependent penalties, assuming knowledge of w(·) and of the complex-

ities of the classes Ck.
(2) derivation of data-dependent penalties. This step will be exemplified in different ways. In the simplest

setting, w(·) is assumed to be known. Then attempts to circumvent the lack of knowledge of w(·) will
be presented.
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Assume again that for each k ∈ N, there exists a non-decreasing positive function φk such that φk(x)/x is
non-increasing, and

E

[
sup

g∈Ck,Var(g−g∗)≤r2
|L(g)− Ln(g)− L(g∗) + Ln(g∗)|

]
≤ φk(r) .

This assumption is not innocuous, we refer to the bibliographical remarks for comments. Let ε∗k be defined as
the solution of the equation r = φk(w(r)).

Let δ denote a small positive quantity.
In order to take advantage of the master equation (38), it will prove fruitful to control reweighted empirical

processes. The reweighting technique used in this section differ slightly from the technique used in Section 5.3,
though the differences are not essential.

Henceforth, let us assume that c < h, where h lower bounds |1 − 2η(·)|. Let K denote a positive number
larger than 1 that will be chosen according the supposedly known value of h. In the sequel, for example, we will
use K = (c+ 1)/(ch). Fix δ for a moment and let yk′ be defined as

yk′ = 2K

[(
4

ε∗k′

w(ε∗k′)

)
+

√
4 log(1/δ)

n
+

4 log(1/δ)
3n

]
.

For any g ∈ Ck′ , the weight of g is defined as

ωk′(g) = P (g∗ − g)2 + y2
k′ .

and the reweighted empirical process indexed by Ck′ is defined as

g 7→ Ln (g∗k)− L (g∗k)− Ln (g) + L (g)
ωk′(g)

.

We will be interested in the supremum of this process

Vk′ = sup
g∈Ck′

Ln (g∗)− L (g∗)− Ln (g) + L (g)
ωk′(g)

Note that Vk′ is just a supremum of a reweighted centered empirical process. The increments of V ′k are upper
bounded by 2/(ny2

k′) and for each g,

Var

[
Ln (g∗k)− L (g∗k)− Ln (g) + L (g)

ωk′(g)

]
≤ 1

2ny2
k′
.

Invoking Talagrand’s inequality (5.1), we have, with probability 1− δ,

Vk′ ≤ 2E [Vk′ ] +

√
4 log(1/δ)
ny2

k′
+

4 log(1/δ)
3ny2

k′
.

An appropriate version of the peeling device shows that, for all k′,

E [Vk′ ] ≤
4ε∗k′

yk′w(ε∗k′)
.
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Hence, combining the last two inequalities, we have, with probability at least 1− δ,

Vk′ ≤ 2
yk′

(
4

ε∗k′

w(ε∗k′)

)
+

√
4 log(1/δ)
ny2

k′
+

4 log(1/δ)
3ny2

k′

≤ 1
K

=
ch

h+ 1
,

where the second inequality follows from the definitions of yk′ and K. Using this bound, the definition of Vk′ ,
and the fact that c < h:

L
(
g∗n,k′

)
− L∗ + (1 + c)

(
Ln (g∗)− Ln

(
g∗n,k′

))
≤ chy2

k′

≤ 192
(1 + c)2

ch

[(
ε∗k′

w(ε∗k′)

)2

+
log(1/δ)

3n

]

≤ 192
(1 + c)2

c

[
ε∗k′ +

log(1/δ)
3nh

]
.

Now, if pen(n, k′) is defined by

pen(n, k′) = 192
(1 + c)
c

(
ε∗k′ +

log k′2

3hn

)
, (39)

then the event
L
(
g∗n,k′

)
− L∗ + (1 + c)

(
Ln (g∗)− Ln

(
g∗n,k′

))
− (1 + c)pen(n, k′) ≥ x

has probability less than
1
k′2

exp
(
−n 3chx

192(1 + c)2

)
.

Thus, we may conclude that

∑
k′

E
[(
L
(
g∗n,k′

)
− (1 + c)Ln

(
g∗n,k′

)
− L(g∗) + (1 + c)Ln(g∗)− (1 + c)pen(n, k′)

)]
≤ 2

192(1 + c)2

3chn
.

Hence, under Massart’s noise conditions, if the above-defined ideal penalties were used, the following oracle
inequality would hold:

E

[
L(g∗

k̂
)− L∗

]
≤ (1 + c) inf

k

(
L(g∗k)− L∗ + 192

(1 + c)
c

(
ε∗k +

log k2

3hn

))
+

128(1 + c)2

chn
. (40)

Up to the 1 + c factor, this penalization scheme represents an ideal bias-variance decomposition. In this sense,
the model selection procedure described in [153] is an asymptotically adaptive scheme in the minimax sense
(but not an exact one).

8.3.2. Data-dependent penalties

In order to get an effective penalty calibration procedure, we need to develop an estimation procedure
for (εk′)k′ . Such a procedure has been proposed by Bartlett, Bousquet and Mendelson in [21] following ideas
initially introduced by Koltchinskii and Panchenko [119]. Here, we sketch the main ideas that lead to sharp
data-dependent penalties.

Note that in order to turn the above-described penalization scheme into a data-dependent procedure, it is
enough to have, with probability larger than 1 − 1

k2 exp(−c′n), an upper bound ε̂k on ε∗k. Suppose that φ̂k is
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defined in such a way that φ̂k is positive, non-decreasing, φ̂k(x)/x is non-increasing and φ̂k(w(ε∗k)) > φk(w(ε∗k)),
then the solution ε̂k of the equation r = φ̂k(w(r)) satisfies ε̂k > ε∗k. Note that if there are no a priori guarantees
that φ̂(x)/x is non-increasing, it is enough to replace φ̂(x) by x supx′≥x φ̂(x′)/(x′).

Now, in order to define an adequate approximation φ̂k of φk, we may take advantage of the concentration
properties of conditional Rademacher averages and of empirical processes. Instead of

E

[
sup

g∈Ck,Var(g−g∗)≤r2
|L(g)− Ln(g)− L(g∗) + Ln(g∗)|

]
≤ φk(r) ,

we consider

φ̂k(r) = Eσ

[
sup

g∈Ck,Ln(g)−Ln(g∗n,k)≤2r2

∣∣∣∣∣
n∑

i=1

σi1g(Xi) 6=Yi

∣∣∣∣∣
]
,

where expectation is taken with respect to the Rademacher random variables σi. If r is not too small, then as
a consequence of Talagrand’s inequality, the empirically defined set{

g ∈ Ck, Ln(g)− Ln(g∗n,k) ≤ 2r2
}

contains the set {
g ∈ Ck : Var(g − g∗) ≤ r2

}
.

The concentration properties of conditional Rademacher averages now imply that, with high probability,

Eσ

[
sup

g∈Ck,Var(g−g∗)≤r2

∣∣∣∣∣
n∑

i=1

σi1g(Xi) 6=Yi

∣∣∣∣∣
]
≥ φk(r) .

It is useful to realize that, provided φk(x)/x and φ̂k(x)/x are non-increasing, in order to have ε̂∗k ≥ ε∗k, it is
enough that with high probability φk(w(ε∗)) ≤ φ̂k(w(ε∗)).

Bibliographical remarks. The results described in this section are based on Massart [153]. Massart describes
how carefully using sharp concentration inequalities for empirical vc dimension and entropy allows to estimate
the excess risk in classification problems and how such estimates can be used to build adaptive model selection
procedures under suitable noise conditions. In [153] data-dependent estimates of the ε∗k rely on data-dependent
estimates of the average vc dimension and on classical results connecting empirical L2 entropy numbers and
the vc dimension.

Bartlett, Bousquet and Mendelson [21], Lugosi and Wegkamp [140], and more recently Koltchinskii [118]
explore the applications of localized Rademacher complexity. They show how localized Rademacher complex-
ities can be used in order to estimate the excess risk and provide an alternative to Massart’s approach [153].
Koltchinskii [118] discusses thoroughly different views at sharp data-dependent excess risk estimation proce-
dures.

8.4. Adaptive model selection under unknown noise conditions

Under Massart’s noise conditions, the relationship between ε∗k and the excess risk in Ck is completely specified
provided h is known. If h is unknown, let alone if w(r) is unknown, defining data-dependent penalties remains a
challenge. Indeed, the computation of localized Rademacher averages allows to approximate the functions φk(·)
by data-dependent functions φ̂k(·). Unfortunately, in general, this is not enough to approximate the solution of
equation r = φk(w(r)). However, under certain conditions on the behavior of w(·), an estimate of the desired
form may be constructed. For example, one may assume that w(r) behaves like (r/h)α/2 for some unknown
constants α ∈ (0, 1], and h.
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Pre-testing (comparison) methods attempt to turn around this difficulty in the following framework. The
sequence of models (Ck)k is assumed to be nested (and finite): Ck ⊆ Ck+1. Moreover, it is assumed that there
exists a k∗, such that g∗ ∈ Ck∗ .

Now recall that if k ≥ k∗, we have a fairly precise idea of the behavior of the random variables L(g∗k)−L(g∗),
Ln(g∗)− Ln(g∗k), d2

2(g
∗, g∗k), and d2

2,n(g∗, g∗k).
On the other hand, if g∗ ∈ C, we have the relation

w2(r) ≤ sup
{
d2
2(g, g

′) : g, g′ ∈ C, L(g) ∨ L(g′) ≤ r
}
≤ 2w2(r) . (41)

This relation tells us that if we can estimate the diameters of the level sets of the excess risk in the class, then
we can also estimate w() from above.

It is a quite routine exercise to check that, provided r is large enough, with high probability, the squared
empirical diameter of sets is a close approximation of their squared diameter (this is a straightforward conse-
quence of concentration inequalities for suprema of empirical processes indexed by bounded positive functions).
It has already been observed that empirical level sets of the excess risk approximately coincide with level sets
of the excess risk.

Bringing all these ideas together, it is possible to estimate w from empirical data as soon as the model under
consideration contains the Bayes classifier. If we have a finite collection of embedded models whose union is
guaranteed to contain the Bayes classifier, it is always possible to estimate w() or rather φk(w()) from the data
by monitoring the diameters of the level sets of the empirical risk in the largest model. Such a procedure would
allow to define a penalty-based model selection method that would be as adaptive to the noise conditions that
is to w() as the pre-testing method (or comparison method) described in [210].

Bibliographical remarks. Pre-testing procedures were first proposed by Lepskii [129], [130], [128] for perform-
ing model selection in a regression context. They are also discussed by Birgé [31]. Their use in model selection
for classification was pioneered by Tsybakov [209]. An early account of ratio-type concentration inequalities
can be found in Chapter V of [214].

The testing procedure presented in [210] can be considered as a comparison of Ln(g∗n,k)− Ln(g∗n,k′) and

Rn

(
{1g(X) 6=Y − 1g∗

n,k′ (X) 6=Y : g ∈ Ck′ , d2,n(g, g∗n,k′) ≤ d2,n(g∗n,k, g
∗
n,k′)}

)
,

where k′ > k. If the excess empirical risk is upper bounded by the conditional Rademacher average, this strongly
suggests that Ln(g∗n,k)−Ln(g∗n,k′) behaves like the increment of a centered empirical process and thus that L(g∗n,k)
and L(g∗n,k′) are not essentially different. Tsybakov’s comparison procedure implicitly computes a Rademacher
complexity in an empirical L2 ball centered around a minimizer of the empirical risk. Without having to
compute the fixed point of φk(w(·)) it provides adaptivity under some restrictive but relevant conditions.

Recently, Bartlett and Mendelson [22], and Koltchinskii [118] went one step further and pointed out that
there is no need to estimate separately complexity and noise conditions: what matters is φ(w(·)). In order to
estimate the latter quantity, it makes sense to compute localized Rademacher complexities in the level sets of the
empirical risk. In his recent work Koltchinskii [118] also revisits comparison-based methods using concentration
inequalities and provides a unified account of penalty-based and comparison-based model selection techniques
in classification.

Van de Geer and Tsybakov [216] recently pointed out that in some special cases penalty-based model selection
can achieve adaptivity to the noise conditions.

8.5. Revisiting hold-out estimates

Designing and assessing the above-described model selection policies requires a good command of empiri-
cal processes theory. This partly explains why re-sampling techniques like ten-fold cross-validation tend to be
favored by practitioners. Moreover, there is no simple way to reduce the computation of local Rademacher aver-
ages to empirical risk minimization, while re-sampling methods do not suffer from such a drawback: according
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to the computational complexity perspective, carrying out ten-fold cross-validation is not harder than empirical
risk minimization. Obtaining non-asymptotic oracle inequalities of such cross-validation methods remains to be
a challenge.

The simplest cross validation method is hold-out. It consists in splitting the sample in two parts: a training
set of length n−m and a test set of length m. Let us denote by L′m(g) the average loss of g on the test set. The
line of reasoning that allowed to analyze penalty-based model selection under known noise conditions works
again:

L(g∗
n,k̂

)− L∗ ≤ (1 + c)
(
Lm(g∗

n,k̂
)− Lm(g∗) + pen(n, k̂)

)
+
(
L(g∗

n,k̂
)− L∗ − (1 + c)Lm(g∗

n,k̂
) + (1 + c)Lm(g∗)− (1 + c)pen(n, k)

)
≤ (1 + c)

(
Lm(g∗n,k)− Lm(g∗) + pen(n, k)

)
+sup

k′

(
L(g∗n,k′)− L∗ − (1 + c)Lm(g∗n,k′) + (1 + c)Lm(g∗)− (1 + c)pen(n, k′)

)
.

Let ε denote the solution of the equation w(x) =
√
x. Fix k′ for now, and assume that L(g∗n,k′) − L∗ > ε. By

Bernstein’s inequality,

P
{
L(g∗n,k′)− L∗ − (1 + c)Lm(g∗n,k′) + (1 + c)Lm(g∗)− (1 + c)pen(n, k′) ≥ x

}
≤ exp

(
− cm

2(2c+ 1)
(
c(L(g∗n,k′)− L∗)/(c+ 1) + pen(n, k′) + x

))
≤ exp

(
− cm

2(2c+ 1)
(pen(n, k′) + x)

)
.

If pen(n, k′) > 2(2c+ 1) log k′2

m , combining the above-described inequalities and resorting again to integration
by parts:

E

[
L(g∗

n,k̂
)− L∗

]
≤ (1 + c) inf

k

(
L(g∗n,k)− L∗ + ε+ pen(n, k)

)
+

2(2c+ 1)
cm

.

Bibliographical remarks. Hastie, Tibshirani and Friedman [99] provide an application-oriented discussion
of model selection strategies. They provide an argument in defense of the hold-out methodology. An early
account of the hold-out strategy can be found in [138], and in [20]. A sharp use of hold-out estimates in an
adaptive regression framework is described by Wegkamp in [227]. Better constants and exponential inequalities
were recently pointed out by P. Massart [155].
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[1] R. Ahlswede, P. Gács, and J. Körner. Bounds on conditional probabilities with applications in multi-user communication.

Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 34:157–177, 1976. (correction in 39:353–354,1977).
[2] M.A. Aizerman, E.M. Braverman, and L.I. Rozonoer. The method of potential functions for the problem of restoring the

characteristic of a function converter from randomly observed points. Automation and Remote Control, 25:1546–1556, 1964.

[3] M.A. Aizerman, E.M. Braverman, and L.I. Rozonoer. The probability problem of pattern recognition learning and the method
of potential functions. Automation and Remote Control, 25:1307–1323, 1964.

[4] M.A. Aizerman, E.M. Braverman, and L.I. Rozonoer. Theoretical foundations of the potential function method in pattern
recognition learning. Automation and Remote Control, 25:917–936, 1964.

[5] H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19:716–723, 1974.
[6] S. Alesker. A remark on the Szarek-Talagrand theorem. Combinatorics, Probability, and Computing, 6:139–144, 1997.
[7] N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. Scale-sensitive dimensions, uniform convergence, and learnability.

Journal of the ACM, 44:615–631, 1997.



TITLE WILL BE SET BY THE PUBLISHER 39

[8] M. Anthony and P. L. Bartlett. Neural Network Learning: Theoretical Foundations. Cambridge University Press, Cambridge,

1999.
[9] M. Anthony and N. Biggs. Computational Learning Theory. Cambridge Tracts in Theoretical Computer Science (30). Cam-

bridge University Press, 1992.

[10] M. Anthony and J. Shawe-Taylor. A result of Vapnik with applications. Discrete Applied Mathematics, 47:207–217, 1993.
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[32] L. Birgé and P. Massart. Rates of convergence for minimum contrast estimators. Probability Theory and Related Fields,
97:113–150, 1993.
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