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Abstract. Concentration inequalities deal with deviations of functions
of independent random variables from their expectation. In the last
decade new tools have been introduced making it possible to establish
simple and powerful inequalities. These inequalities are at the heart of
the mathematical analysis of various problems in machine learning and
made it possible to derive new efficient algorithms. This text attempts
to summarize some of the basic tools.

1 Introduction

The laws of large numbers of classical probability theory state that sums of
independent random variables are, under very mild conditions, close to their
expectation with a large probability. Such sums are the most basic examples
of random variables concentrated around their mean. More recent results reveal
that such a behavior is shared by a large class of general functions of independent
random variables. The purpose of these notes is to give an introduction to some
of these general concentration inequalities.

The inequalities discussed in these notes bound tail probabilities of general
functions of independent random variables. Several methods have been known to
prove such inequalities, including martingale methods (see Milman and Schecht-
man [1] and the surveys of McDiarmid [2, 3]), information-theoretic methods (see
Alhswede, Gács, and Körner [4], Marton [5, 6, 7], Dembo [8], Massart [9] and Rio
[10]), Talagrand’s induction method [11, 12, 13] (see also Luczak and McDiarmid
[14], McDiarmid [15] and Panchenko [16, 17, 18]), the decoupling method sur-
veyed by de la Peña and Giné [19], and the so-called “entropy method”, based on
logarithmic Sobolev inequalities, developed by Ledoux [20, 21], see also Bobkov
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and Ledoux [22], Massart [23], Rio [10], Klein [24], Boucheron, Lugosi, and Mas-
sart [25, 26], Bousquet [27, 28], and Boucheron, Bousquet, Lugosi, and Massart
[29]. Also, various problem-specific methods have been worked out in random
graph theory, see Janson,  Luczak, and Ruciński [30] for a survey.

First of all we recall some of the essential basic tools needed in the rest of
these notes. For any nonnegative random variable X,

�
X =

∫ ∞

0

� {X ≥ t}dt .

This implies Markov’s inequality: for any nonnegative random variable X, and
t > 0,

� {X ≥ t} ≤
�
X

t
.

If follows from Markov’s inequality that if φ is a strictly monotonically increasing
nonnegative-valued function then for any random variable X and real number t,

� {X ≥ t} =
� {φ(X) ≥ φ(t)} ≤

�
φ(X)

φ(t)
.

An application of this with φ(x) = x2 is Chebyshev’s inequality: if X is an
arbitrary random variable and t > 0, then

� {|X − �
X| ≥ t} =

� {|X − �
X|2 ≥ t2

}
≤

� [|X − �
X|2

]

t2
=

Var{X}
t2

.

More generally taking φ(x) = xq (x ≥ 0), for any q > 0 we have

� {|X − �
X| ≥ t} ≤

�
[|X − �

X|q]
tq

.

In specific examples one may choose the value of q to optimize the obtained
upper bound. Such moment bounds often provide with very sharp estimates
of the tail probabilities. A related idea is at the basis of Chernoff’s bounding

method. Taking φ(x) = esx where s is an arbitrary positive number, for any
random variable X, and any t > 0, we have

� {X ≥ t} =
� {esX ≥ est} ≤

�
esX

est
.

In Chernoff’s method, we find an s > 0 that minimizes the upper bound or
makes the upper bound small.

Next we recall some simple inequalities for sums of independent random vari-
ables. Here we are primarily concerned with upper bounds for the probabilities
of deviations from the mean, that is, to obtain inequalities for

� {Sn−
�
Sn ≥ t},

with Sn =
∑n
i=1Xi, where X1, . . . , Xn are independent real-valued random vari-

ables.
Chebyshev’s inequality and independence immediately imply

� {|Sn −
�
Sn| ≥ t} ≤

Var{Sn}
t2

=

∑n
i=1 Var{Xi}

t2
.
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In other words, writing σ2 = 1
n

∑n
i=1 Var{Xi},

�

{∣∣∣∣∣
1

n

n∑

i=1

Xi −
�
Xi

∣∣∣∣∣ ≥ ε
}
≤ σ2

nε2
.

Chernoff’s bounding method is especially convenient for bounding tail prob-
abilities of sums of independent random variables. The reason is that since the
expected value of a product of independent random variables equals the product
of the expected values, Chernoff’s bound becomes

� {Sn −
�
Sn ≥ t} ≤ e−st

�

[
exp

(
s

n∑

i=1

(Xi −
�
Xi)

)]

= e−st
n∏

i=1

�
[
es(Xi− � Xi)

]
(by independence). (1)

Now the problem of finding tight bounds comes down to finding a good upper
bound for the moment generating function of the random variables Xi −

�
Xi.

There are many ways of doing this. For bounded random variables perhaps the
most elegant version is due to Hoeffding [31] which we state without proof.

Lemma 1. hoeffding’s inequality. Let X be a random variable with
�
X =

0, a ≤ X ≤ b. Then for s > 0,

� [
esX

]
≤ es2(b−a)2/8.

This lemma, combined with (1) immediately implies Hoeffding’s tail inequal-
ity [31]:

Theorem 1. Let X1, . . . , Xn be independent bounded random variables such
that Xi falls in the interval [ai, bi] with probability one. Then for any t > 0
we have

� {Sn −
�
Sn ≥ t} ≤ e−2t2/

Pn
i=1(bi−ai)

2

and
� {Sn −

�
Sn ≤ −t} ≤ e−2t2/

Pn
i=1(bi−ai)

2

.

The theorem above is generally known as Hoeffding’s inequality. For binomial
random variables it was proved by Chernoff [32] and Okamoto [33].

A disadvantage of Hoeffding’s inequality is that it ignores information about
the variance of the Xi’s. The inequalities discussed next provide an improvement
in this respect.

Assume now without loss of generality that
�
Xi = 0 for all i = 1, . . . , n. Our

starting point is again (1), that is, we need bounds for
� [

esXi
]
. Introduce the

notation σ2
i =

�
[X2

i ], and

Fi =
�

[ψ(sXi)] =

∞∑

r=2

sr−2 �
[Xr

i ]

r!σ2
i

.
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Also, let ψ(x) = exp(x) − x − 1, and observe that ψ(x) ≤ x2/2 for x ≤ 0 and
ψ(sx) ≤ x2ψ(s) for s ≥ 0 and x ∈ [0, 1]. Since esx = 1 + sx + ψ(sx), we may
write

� [
esXi

]
= 1 + s

�
[Xi] +

�
[ψ(sXi)]

= 1 +
�

[ψ(sXi)] (since
�

[Xi] = 0.)

≤ 1 +
�

[ψ(s(Xi)+) + ψ(−s(Xi)−)]

(where x+ = max(0, x) and x− = max(0,−x))

≤ 1 +
�

[ψ(s(Xi)+) +
s2

2
(Xi)

2
−] (using ψ(x) ≤ x2/2 for x ≤ 0. ) .

Now assume that the Xi’s are bounded such that Xi ≤ 1. Thus, we have obtained

� [
esXi

]
≤ 1 +

�
[ψ(s)(Xi)

2
+ +

s2

2
(Xi)

2
−] ≤ 1 + ψ(s)

�
[X2

i ] ≤ exp
(
ψ(s)

�
[X2

i ]
)

Returning to (1) and using the notation σ2 = (1/n)
∑
σ2
i , we get

�

{
n∑

i=1

Xi > t

}
≤ enσ2ψ(s)−st.

Now we are free to choose s. The upper bound is minimized for

s = log

(
1 +

t

nσ2

)
.

Resubstituting this value, we obtain Bennett’s inequality [34]:

Theorem 2. bennett’s inequality. Let X1, . . ., Xn be independent real-valued
random variables with zero mean, and assume that Xi ≤ 1 with probability one.
Let

σ2 =
1

n

n∑

i=1

Var{Xi}.

Then for any t > 0,

�

{
n∑

i=1

Xi > t

}
≤ exp

(
−nσ2h

(
t

nσ2

))
.

where h(u) = (1 + u) log(1 + u)− u for u ≥ 0.

The message of this inequality is perhaps best seen if we do some further
bounding. Applying the elementary inequality h(u) ≥ u2/(2 + 2u/3), u ≥ 0
(which may be seen by comparing the derivatives of both sides) we obtain a
classical inequality of Bernstein [35]:
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Theorem 3. bernstein’s inequality. Under the conditions of the previous
theorem, for any ε > 0,

�

{
1

n

n∑

i=1

Xi > ε

}
≤ exp

(
− nε2

2(σ2 + ε/3)

)
.

Bernstein’s inequality points out an interesting phenomenon: if σ2 < ε,
then the upper bound behaves like e−nε instead of the e−nε

2

guaranteed by
Hoeffding’s inequality. This might be intuitively explained by recalling that a
Binomial(n, λ/n) distribution can be approximated, for large n, by a Poisson(λ)
distribution, whose tail decreases as e−λ.

2 The Efron-Stein Inequality

The main purpose of these notes is to show how many of the tail inequalities for
sums of independent random variables can be extended to general functions of
independent random variables. The simplest, yet surprisingly powerful inequality
of this kind is known as the Efron-Stein inequality. It bounds the variance of
a general function. To obtain tail inequalities, one may simply use Chebyshev’s
inequality.

Let X be some set, and let g : X n → �
be a measurable function of n

variables. We derive inequalities for the difference between the random variable
Z = g(X1, . . . , Xn) and its expected value

�
Z when X1, . . . , Xn are arbitrary

independent (not necessarily identically distributed!) random variables taking
values in X .

The main inequalities of this section follow from the next simple result. To
simplify notation, we write

�
i for the expected value with respect to the variable

Xi, that is,
�
iZ =

�
[Z|X1, . . . , Xi−1, Xi+1, . . . , Xn].

Theorem 4.

Var(Z) ≤
n∑

i=1

�
[
(Z − �

iZ)
2
]
.

Proof. The proof is based on elementary properties of conditional expectation.
Recall that if X and Y are arbitrary bounded random variables, then

�
[XY ] =

�
[

�
[XY |Y ]] =

�
[Y

�
[X|Y ]].

Introduce the notation V = Z − �
Z, and define

Vi =
�

[Z|X1, . . . , Xi]−
�

[Z|X1, . . . , Xi−1], i = 1, . . . , n.
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Clearly, V =
∑n
i=1 Vi. (Thus, V is written as a sum of martingale differences.)

Then

Var(Z) =
�



(

n∑

i=1

Vi

)2



=
�

n∑

i=1

V 2
i + 2

� ∑

i>j

ViVj

=
�

n∑

i=1

V 2
i ,

since, for any i > j,

�
ViVj =

� �
[ViVj |X1, . . . , Xj ] =

�
[Vj

�
[Vi|X1, . . . , Xj ]] = 0 .

To bound
�
V 2
i , note that, by Jensen’s inequality,

V 2
i = (

�
[Z|X1, . . . , Xi]−

�
[Z|X1, . . . , Xi−1])

2

=
(

�
[

�
[Z|X1, . . . , Xn]− �

[Z|X1, . . . , Xi−1, Xi+1, . . . , Xn]
∣∣∣X1, . . . , Xi

])2

≤ �
[
(

�
[Z|X1, . . . , Xn]− �

[Z|X1, . . . , Xi−1, Xi+1, . . . , Xn])
2
∣∣∣X1, . . . , Xi

]

=
�
[
(Z − �

iZ)
2
∣∣∣X1, . . . , Xi

]
.

Taking expected values on both sides, we obtain the statement. �

Now the Efron-Stein inequality follows easily. To state the theorem, let
X ′

1, . . . , X
′
n form an independent copy of X1, . . . , Xn and write

Z ′
i = g(X1, . . . , X

′
i, . . . , Xn) .

Theorem 5. efron-stein inequality (efron and stein [36], steele [37]).

Var(Z) ≤ 1

2

n∑

i=1

� [
(Z − Z ′

i)
2
]

Proof. The statement follows by Theorem 4 simply by using (conditionally)
the elementary fact that if X and Y are independent and identically distributed
random variables, then Var(X) = (1/2)

�
[(X − Y )2], and therefore

�
i

[
(Z − �

iZ)
2
]

=
1

2

�
i

[
(Z − Z ′

i)
2
]
. �

Remark. Observe that in the case when Z =
∑n
i=1Xi is a sum of independent

random variables (of finite variance) then the inequality in Theorem 5 becomes
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an equality. Thus, the bound in the Efron-Stein inequality is, in a sense, not
improvable. This example also shows that, among all functions of independent
random variables, sums, in some sense, are the least concentrated. Below we will
see other evidences for this extremal property of sums.

Another useful corollary of Theorem 4 is obtained by recalling that, for any
random variable X, Var(X) ≤ �

[(X − a)2] for any constant a ∈ �
. Using this

fact conditionally, we have, for every i = 1, . . . , n,

�
i

[
(Z − �

iZ)
2
]
≤ �

i

[
(Z − Zi)2

]

where Zi = gi(X1, . . . , Xi−1, Xi+1, . . . , Xn) for arbitrary measurable functions
gi : Xn−1 → �

of n− 1 variables. Taking expected values and using Theorem 4
we have the following.

Theorem 6.

Var(Z) ≤
n∑

i=1

� [
(Z − Zi)2

]
.

In the next two sections we specialize the Efron-Stein inequality and its vari-
ant Theorem 6 to functions which satisfy some simple easy-to-verify properties.

2.1 Functions with Bounded Differences

We say that a function g : X n → �
has the bounded differences property if for

some nonnegative constants c1, . . . , cn,

sup
x1,...,xn,
x′

i∈X

|g(x1, . . . , xn)− g(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci , 1 ≤ i ≤ n .

In other words, if we change the i-th variable of g while keeping all the others
fixed, the value of the function cannot change by more than ci. Then the Efron-
Stein inequality implies the following:

Corollary 1. If g has the bounded differences property with constants c1, . . . , cn,
then

Var(Z) ≤ 1

2

n∑

i=1

c2i .

Next we list some interesting applications of this corollary. In all cases the
bound for the variance is obtained effortlessly, while a direct estimation of the
variance may be quite involved.

Example. uniform deviations. One of the central quantities of statistical
learning theory and empirical process theory is the following: let X1, . . . , Xn be
i.i.d. random variables taking their values in some set X , and let A be a collection
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of subsets of X . Let µ denote the distribution of X1, that is, µ(A) =
� {X1 ∈ A},

and let µn denote the empirical distribution:

µn(A) =
1

n

n∑

i=1

�

{Xn∈A} .

The quantity of interest is

Z = sup
A∈A
|µn(A)− µ(A)|.

If limn→∞
�
Z = 0 for every distribution of the Xi’s, then A is called a uni-

form Glivenko-Cantelli class, and Vapnik and Chervonenkis [38] gave a beautiful
combinatorial characterization of such classes. But regardless of what A is, by
changing one Xi, Z can change by at most 1/n, so regardless of the behavior of

�
Z, we always have

Var(Z) ≤ 1

2n
.

For more information on the behavior of Z and its role in learning theory see,
for example, Devroye, Györfi, and Lugosi [39], Vapnik [40], van der Vaart and
Wellner [41], Dudley [42].

Next we show how a closer look at the the Efron-Stein inequality implies a
significantly better bound for the variance of Z. We do this in a slightly more
general framework of empirical processes. Let F be a class of real-valued func-
tions and define Z = g(X1, . . . , Xn) = supf∈F

∑n
j=1 f(Xj). Assume that the

functions f ∈ F are such that
�

[f(Xi)] = 0 and take values in [−1, 1]. Let Zi
be defined as

Zi = sup
f∈F

∑

j 6=i
f(Xj) .

Let f̂ be the function achieving the supremum4 in the definition of Z, that is
Z =

∑n
i=1 f̂(Xi) and similarly f̂i be such that Zi =

∑
j 6=i f̂i(Xj). We have

f̂i(Xi) ≤ Z − Zi ≤ f̂(Xi) ,

and thus
∑n
i=1 Z − Zi ≤ Z. As f̂i and Xi are independent,

�
i[f̂i(Xi)] = 0. On

the other hand,

(Z − Zi)2 − f̂2
i (Xi) = (Z − Zi + f̂i(Xi))(Z − Zi − f̂i(Xi))

≤ 2(Z − Zi + f̂i(Xi)) .

Summing over all i and taking expectations,

�

[
n∑

i=1

(Z − Zi)2
]
≤ �

[
n∑

i=1

f̂2
i (Xi) + 2(Z − Zi) + 2f̂i(Xi)

]

≤ n sup
f∈F

�
[f2(X1)] + 2

�
[Z]

4 If the supremum is not attained the proof can be modified to yield the same result.
We omit the details here.
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where at the last step we used the facts that
�

[f̂i(Xi)
2] ≤ supf∈F

�
[f2(X1)],∑n

i=1(Z − Zi) ≤ Z, and
�
f̂i(Xi) = 0. Thus, by the Efron-Stein inequality

Var(Z) ≤ n sup
f∈F

�
[f2(X1)] + 2

�
[Z]

¿From just the bounded differences property we derived Var(Z) ≤ 2n. The
new bound may be a significant improvement whenever the maximum of

�
f(Xi)

2

over f ∈ F is small. (Note that if the class F is not too large,
�
Z is typically of

the order of
√
n.) The exponential tail inequality due to Talagrand [12] extends

this variance inequality, and is one of the most important recent results of the
theory of empirical processes, see also Ledoux [20], Massart [23], Rio [10], Klein
[24], and Bousquet [27, 28].

Example. minimum of the empirical loss. Concentration inequalities have
been used as a key tool in recent developments of model selection methods in
statistical learning theory. For the background we refer to the the recent work of
Koltchinskii and Panchenko [43], Massart [44], Bartlett, Boucheron, and Lugosi
[45], Lugosi and Wegkamp [46], Bousquet [47].

Let F denote a class of {0, 1}-valued functions on some space X . For sim-
plicity of the exposition we assume that F is finite. The results remain true for
general classes as long as the measurability issues are taken care of. Given an
i.i.d. sample Dn = (〈Xi, Yi〉)i≤n of n pairs of random variables 〈Xi, Yi〉 taking
values in X × {0, 1}, for each f ∈ F we define the empirical loss

Ln(f) =
1

n

n∑

i=1

`(f(Xi), Yi)

where the loss function ` is defined on {0, 1}2 by

`(y, y′) =
�
y 6=y′ .

In nonparametric classification and learning theory it is common to select an
element of F by minimizing the empirical loss. The quantity of interest in this
section is the minimal empirical loss

L̂ = inf
f∈F

Ln(f).

Corollary 1 immediately implies that Var(L̂) ≤ 1/(2n). However, a more care-

ful application of the Efron-Stein inequality reveals that L̂ may be much more
concentrated than predicted by this simple inequality. Getting tight results for
the fluctuations of L̂ provides better insight into the calibration of penalties in
certain model selection methods.

Let Z = nL̂ and let Z ′
i be defined as in Theorem 5, that is,

Z ′
i = min

f∈F


∑

j 6=i
`(f(Xj), Yj) + `(f(Xi

′), Yi
′)
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where 〈Xi
′, Yi

′〉 is independent of Dn and has the same distribution as 〈Xi, Yi〉.
Now the convenient form of the Efron-Stein inequality is the following:

Var(Z) ≤ 1

2

n∑

i=1

� [
(Z − Z ′

i)
2
]

=

n∑

i=1

� [
(Z − Z ′

i)
2 �

Z′
i>Z

]

Let f∗ denote a (possibly non-unique) minimizer of the empirical risk so that
Z =

∑n
j=1 `(f

∗(Xj), Yj). The key observation is that

(Z − Z ′
i)

2 �

Z′
i>Z
≤ (`(f∗(Xi

′), Yi
′)− `(f∗(Xi), Yi))

2 �

Z′
i>Z

= `(f∗(X ′
i), Y

′
i )

�

`(f∗(Xi),Yi)=0 .

Thus,

n∑

i=1

� [
(Z − Z ′

i)
2 �

Z′
i>Z

]
≤ � ∑

i:`(f∗(Xi),Yi)=0

�

X′
i,Y

′
i
[`(f∗(X ′

i), Y
′
i )] ≤ n �

L(f∗)

where
�

X′
i,Y

′
i

denotes expectation with respect to the variables X ′
i, Y

′
i and for

each f ∈ F , L(f) =
�
`(f(X), Y ) is the true (expected) loss of f . Therefore, the

Efron-Stein inequality implies that

Var(L̂) ≤
�
L(f∗)

n
.

This is a significant improvement over the bound 1/(2n) whenever
�
L(f ∗) is

much smaller than 1/2. This is very often the case. For example, we have

L(f∗) = L̂− (Ln(f∗)− L(f∗)) ≤ Z

n
+ sup
f∈F

(L(f)− Ln(f))

so that we obtain

Var(L̂) ≤
�
L̂

n
+

�
supf∈F (L(f)− Ln(f))

n
.

In most cases of interest,
�

supf∈F (L(f)−Ln(f)) may be bounded by a constant

(depending on F) times n−1/2 (see, e.g., Lugosi [48]) and then the second term
on the right-hand side is of the order of n−3/2. For exponential concentration
inequalities for L̂ we refer to Boucheron, Lugosi, and Massart [26].

Example. kernel density estimation. Let X1, . . . , Xn be i.i.d. samples
drawn according to some (unknown) density f on the real line. The density is
estimated by the kernel estimate

fn(x) =
1

nh

n∑

i=1

K

(
x−Xi

h

)
,
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where h > 0 is a smoothing parameter, and K is a nonnegative function with∫
K = 1. The performance of the estimate is measured by the L1 error

Z = g(X1, . . . , Xn) =

∫
|f(x)− fn(x)|dx.

It is easy to see that

|g(x1, . . . , xn)− g(x1, . . . , x
′
i, . . . , xn)| ≤ 1

nh

∫ ∣∣∣∣K
(
x− xi
h

)
−K

(
x− x′i
h

)∣∣∣∣ dx

≤ 2

n
,

so without further work we get

Var(Z) ≤ 2

n
.

It is known that for every f ,
√
n

�
g → ∞ (see Devroye and Györfi [49]) which

implies, by Chebyshev’s inequality, that for every ε > 0

�
{∣∣∣∣

Z
�
Z
− 1

∣∣∣∣ ≥ ε
}

=
� {|Z − �

Z| ≥ ε �
Z} ≤ Var(Z)

ε2(
�
Z)2
→ 0

as n→∞. That is, Z/
�
Z → 0 in probability, or in other words, Z is relatively

stable. This means that the random L1-error behaves like its expected value.
This result is due to Devroye [50], [51]. For more on the behavior of the L1 error
of the kernel density estimate we refer to Devroye and Györfi [49], Devroye and
Lugosi [52].

2.2 Self-bounding Functions

Another simple property which is satisfied for many important examples is the
so-called self-bounding property. We say that a nonnegative function g : X n → �

has the self-bounding property if there exist functions gi : Xn−1 → �
such that

for all x1, . . . , xn ∈ X and all i = 1, . . . , n,

0 ≤ g(x1, . . . , xn)− gi(x1, . . . , xi−1, xi+1, . . . , xn) ≤ 1

and also
n∑

i=1

(g(x1, . . . , xn)− gi(x1, . . . , xi−1, xi+1, . . . , xn)) ≤ g(x1, . . . , xn) .

Concentration properties for such functions have been studied by Boucheron,
Lugosi, and Massart [25], Rio [10], and Bousquet [27, 28]. For self-bounding
functions we clearly have

n∑

i=1

(g(x1, . . . , xn)− gi(x1, . . . , xi−1, xi+1, . . . , xn))
2 ≤ g(x1, . . . , xn) .

and therefore Theorem 6 implies
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Corollary 2. If g has the self-bounding property, then

Var(Z) ≤ �
Z .

Next we mention some applications of this simple corollary. It turns out that
in many cases the obtained bound is a significant improvement over what we
would obtain by using simply Corollary 1.

Remark. relative stability. Bounding the variance of Z by its expected
value implies, in many cases, the relative stability of Z. A sequence of non-
negative random variables (Zn) is said to be relatively stable if Zn/

�
Zn → 1

in probability. This property guarantees that the random fluctuations of Zn
around its expectation are of negligible size when compared to the expectation,
and therefore most information about the size of Zn is given by

�
Zn. If Zn has

the self-bounding property, then, by Chebyshev’s inequality, for all ε > 0,

�
{∣∣∣∣

Zn
�
Zn
− 1

∣∣∣∣ > ε

}
≤ Var(Zn)

ε2(
�
Zn)2

≤ 1

ε2
�
Zn

.

Thus, for relative stability, it suffices to have
�
Zn →∞.

Example. rademacher averages. A less trivial example for self-bounding
functions is the one of Rademacher averages. Let F be a class of functions
with values in [−1, 1]. If σ1, . . . , σn denote independent symmetric {−1, 1}-valued
random variables, independent of the Xi’s (the so-called Rademacher random
variables), then we define the conditional Rademacher average as

Z =
�


sup
f∈F

n∑

j=1

σjf(Xj)|Xn
1


 ,

where the notation Xn
1 is a shorthand for X1, . . . , Xn. Thus, the expected value

is taken with respect to the Rademacher variables and Z is a function of the Xi’s.
Quantities like Z have been known to measure effectively the complexity of model
classes in statistical learning theory, see, for example, Koltchinskii [53], Bartlett,
Boucheron, and Lugosi [45], Bartlett and Mendelson [54], Bartlett, Bousquet,
and Mendelson [55]. It is immediate that Z has the bounded differences property
and Corollary 1 implies Var(Z) ≤ n/2. However, this bound may be improved
by observing that Z also has the self-bounding property, and therefore Var(Z) ≤

�
Z. Indeed, defining

Zi =
�


sup
f∈F

n∑

j=1

j 6=i

σjf(Xj)|Xn
1




it is easy to see that 0 ≤ Z − Zi ≤ 1 and
∑n
i=1(Z − Zi) ≤ Z (the details are

left as an exercise). The improvement provided by Lemma 2 is essential since it
is well-known in empirical process theory and statistical learning theory that in
many cases when F is a relatively small class of functions,

�
Z may be bounded

by something like Cn1/2 where the constant C depends on the class F , see, e.g.,
Vapnik [40], van der Vaart and Wellner [41], Dudley [42].
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Configuration functions. An important class of functions satisfying the self-
bounding property consists of the so-called configuration functions defined by
Talagrand [11, section 7]. Our definition, taken from [25] is a slight modification
of Talagrand’s.

Assume that we have a property P defined over the union of finite products
of a set X , that is, a sequence of sets P1 ∈ X , P2 ∈ X ×X , . . . , Pn ∈ Xn. We say
that (x1, . . . xm) ∈ Xm satisfies the property P if (x1, . . . xm) ∈ Pm. We assume
that P is hereditary in the sense that if (x1, . . . xm) satisfies P then so does any
subsequence (xi1 , . . . xik) of (x1, . . . xm). The function gn that maps any tuple
(x1, . . . xn) to the size of the largest subsequence satisfying P is the configuration

function associated with property P .
Corollary 2 implies the following result:

Corollary 3. Let gn be a configuration function, and let Z = gn(X1, . . . , Xn),
where X1, . . . , Xn are independent random variables. Then for any t ≥ 0,

Var(Z) ≤ �
Z .

Proof. By Corollary 2 it suffices to show that any configuration function is
self bounding. Let Zi = gn−1(X1, . . . , Xi−1, Xi+1, . . . , Xn). The condition 0 ≤
Z − Zi ≤ 1 is trivially satisfied. On the other hand, assume that Z = k and
let {Xi1 , . . . , Xik} ⊂ {X1, . . . , Xn} be a subsequence of cardinality k such that
fk(Xi1 , . . . , Xik) = k. (Note that by the definition of a configuration function
such a subsequence exists.) Clearly, if the index i is such that i /∈ {i1, . . . , ik}
then Z = Zi, and therefore

n∑

i=1

(Z − Zi) ≤ Z

is also satisfied, which concludes the proof. �

To illustrate the fact that configuration functions appear rather naturally in
various applications, we describe a prototypical example:

Example. vc dimension. One of the central quantities in statistical learning
theory is the Vapnik-Chervonenkis dimension, see Vapnik and Chervonenkis [38,
56], Blumer, Ehrenfeucht, Haussler, and Warmuth [57], Devroye, Györfi, and
Lugosi [39], Anthony and Bartlett [58], Vapnik [40], etc.

Let A be an arbitrary collection of subsets of X , and let xn1 = (x1, . . . , xn)
be a vector of n points of X . Define the trace of A on xn1 by

tr(xn1 ) = {A ∩ {x1, . . . , xn} : A ∈ A} .

The shatter coefficient, (or Vapnik-Chervonenkis growth function) of A in xn1
is T (xn1 ) = |tr(xn1 )|, the size of the trace. T (xn1 ) is the number of different
subsets of the n-point set {x1, . . . , xn} generated by intersecting it with ele-
ments of A. A subset {xi1 , . . . , xik} of {x1, . . . , xn} is said to be shattered if
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2k = T (xi1 , . . . , xik). The vc dimension D(xn1 ) of A (with respect to xn1 ) is the
cardinality k of the largest shattered subset of xn1 . From the definition it is obvi-
ous that gn(xn1 ) = D(xn1 ) is a configuration function (associated to the property
of “shatteredness”, and therefore if X1, . . . , Xn are independent random vari-
ables, then

Var(D(Xn
1 )) ≤ �

D(Xn
1 ) .

3 The Entropy Method

In the previous section we saw that the Efron-Stein inequality serves as a pow-
erful tool for bounding the variance of general functions of independent random
variables. Then, via Chebyshev’s inequality, one may easily bound the tail prob-
abilities of such functions. However, just as in the case of sums of independent
random variables, tail bounds based on inequalities for the variance are often
not satisfactory, and essential improvements are possible. The purpose of this
section is to present a methodology which allows one to obtain exponential tail
inequalities in many cases. The pursuit of such inequalities has been an impor-
tant topics in probability theory in the last few decades. Originally, martingale
methods dominated the research (see, e.g., McDiarmid [2, 3], Rhee and Tala-
grand [59], Shamir and Spencer [60]) but independently information-theoretic
methods were also used with success (see Alhswede, Gács, and Körner [4], Mar-
ton [5, 6, 7], Dembo [8], Massart [9], Rio [10], and Samson [61]). Talagrand’s
induction method [11, 12, 13] caused an important breakthrough both in the
theory and applications of exponential concentration inequalities. In this section
we focus on so-called “entropy method”, based on logarithmic Sobolev inequal-
ities developed by Ledoux [20, 21], see also Bobkov and Ledoux [22], Massart
[23], Rio [10], Boucheron, Lugosi, and Massart [25], [26], and Bousquet [27, 28].
This method makes it possible to derive exponential analogues of the Efron-Stein
inequality perhaps the simplest way.

The method is based on an appropriate modification of the “tensorization”
inequality Theorem 4. In order to prove this modification, we need to recall some
of the basic notions of information theory. To keep the material at an elementary
level, we prove the modified tensorization inequality for discrete random variables
only. The extension to arbitrary distributions is straightforward.

3.1 Basic Information Theory

In this section we summarize some basic properties of the entropy of a discrete-
valued random variable. For a good introductory book on information theory we
refer to Cover and Thomas [62].

Let X be a random variable taking values in the countable set X with dis-
tribution

� {X = x} = p(x), x ∈ X . The entropy of X is defined by

H(X) =
�

[− log p(X)] = −
∑

x∈X
p(x) log p(x)
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(where log denotes natural logarithm and 0 log 0 = 0). If X,Y is a pair of discrete
random variables taking values in X × Y then the joint entropy H(X,Y ) of X
and Y is defined as the entropy of the pair (X,Y ). The conditional entropy

H(X|Y ) is defined as

H(X|Y ) = H(X,Y )−H(Y ) .

Observe that if we write p(x, y) =
� {X = x, Y = y} and p(x|y) =

� {X =
x|Y = y} then

H(X|Y ) = −
∑

x∈X ,y∈Y
p(x, y) log p(x|y)

from which we see that H(X|Y ) ≥ 0. It is also easy to see that the defining
identity of the conditional entropy remains true conditionally, that is, for any
three (discrete) random variables X,Y, Z,

H(X,Y |Z) = H(Y |Z) +H(X|Y,Z) .

(Just add H(Z) to both sides and use the definition of the conditional entropy.)
A repeated application of this yields the chain rule for entropy: for arbitrary
discrete random variables X1, . . . , Xn,

H(X1, . . . , Xn) = H(X1)+H(X2|X1)+H(X3|X1, X2)+· · ·+H(Xn|X1, . . . , Xn−1) .

Let P and Q be two probability distributions over a countable set X with prob-
ability mass functions p and q. Then the Kullback-Leibler divergence or relative

entropy of P and Q is

D(P‖Q) =
∑

x∈X
p(x) log

p(x)

q(x)
.

Since log x ≤ x− 1,

D(P‖Q) = −
∑

x∈X
p(x) log

q(x)

p(x)
≥ −

∑

x∈X
p(x)

(
q(x)

p(x)
− 1

)
= 0 ,

so that the relative entropy is always nonnegative, and equals zero if and only if
P = Q. This simple fact has some interesting consequences. For example, if X is
a finite set with N elements and X is a random variable with distribution P and
we take Q to be the uniform distribution over X then D(P‖Q) = logN −H(X)
and therefore the entropy of X never exceeds the logarithm of the cardinality of
its range.

Consider a pair of random variables X,Y with joint distribution PX,Y and
marginal distributions PX and PY . Noting that D(PX,Y ‖PX × PY ) = H(X) −
H(X|Y ), the nonnegativity of the relative entropy implies thatH(X) ≥ H(X|Y ),
that is, conditioning reduces entropy. It is similarly easy to see that this fact re-
mains true for conditional entropies as well, that is,

H(X|Y ) ≥ H(X|Y,Z) .

Now we may prove the following inequality of Han [63]
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Theorem 7. han’s inequality. Let X1, . . . , Xn be discrete random variables.
Then

H(X1, . . . , Xn) ≤ 1

n− 1

n∑

i=1

H(X1, . . . , Xi−1, Xi+1, . . . , Xn)

Proof. For any i = 1, . . . , n, by the definition of the conditional entropy and
the fact that conditioning reduces entropy,

H(X1, . . . , Xn)

= H(X1, . . . , Xi−1, Xi+1, . . . , Xn) +H(Xi|X1, . . . , Xi−1, Xi+1, . . . , Xn)

≤ H(X1, . . . , Xi−1, Xi+1, . . . , Xn) +H(Xi|X1, . . . , Xi−1) i = 1, . . . , n .

Summing these n inequalities and using the chain rule for entropy, we get

nH(X1, . . . , Xn) ≤
n∑

i=1

H(X1, . . . , Xi−1, Xi+1, . . . , Xn) +H(X1, . . . , Xn)

which is what we wanted to prove. �

We finish this section by an inequality which may be regarded as a version
of Han’s inequality for relative entropies. As it was pointed out by Massart [44],
this inequality may be used to prove the key tensorization inequality of the next
section.

To this end, let X be a countable set, and let P and Q be probability distri-
butions on X n such that P = P1×· · ·×Pn is a product measure. We denote the
elements of X n by xn1 = (x1, . . . , xn) and write x(i) = (x1, . . . , xi−1, xi+1, . . . , xn)
for the (n− 1)-vector obtained by leaving out the i-th component of xn1 . Denote
by Q(i) and P (i) the marginal distributions of xn1 according to Q and P , that is,

Q(i)(x) =
∑

x∈X
Q(x1, . . . , xi−1, x, xi+1, . . . , xn)

and

P (i)(x) =
∑

x∈X
P (x1, . . . , xi−1, x, xi+1, . . . , xn)

=
∑

x∈X
P1(x1) · · ·Pi−1(xi−1)Pi(x)Pi+1(xi+1) · · ·Pn(xn) .

Then we have the following.

Theorem 8. han’s inequality for relative entropies.

D(Q‖P ) ≥ 1

n− 1

n∑

i=1

D(Q(i)‖P (i))

or equivalently,

D(Q‖P ) ≤
n∑

i=1

(
D(Q‖P )−D(Q(i)‖P (i))

)
.
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Proof. The statement is a straightforward consequence of Han’s inequality.
Indeed, Han’s inequality states that

∑

xn
1 ∈Xn

Q(xn1 ) logQ(xn1 ) ≥ 1

n− 1

n∑

i=1

∑

x(i)∈Xn−1

Q(i)(x(i)) logQ(i)(x(i)) .

Since

D(Q‖P ) =
∑

xn
1 ∈Xn

Q(xn1 ) logQ(xn1 )−
∑

xn
1 ∈Xn

Q(xn1 ) logP (xn1 )

and

D(Q(i)‖P (i)) =
∑

x(i)∈Xn−1

(
Q(i)(x(i)) logQ(i)(x(i))−Q(i)(x(i)) logP (i)(x(i))

)
,

it suffices to show that

∑

xn
1 ∈Xn

Q(xn1 ) logP (xn1 ) =
1

n− 1

n∑

i=1

∑

x(i)∈Xn−1

Q(i)(x(i)) logP (i)(x(i)) .

This may be seen easily by noting that by the product property of P , we have
P (xn1 ) = P (i)(x(i))Pi(xi) for all i, and also P (xn1 ) =

∏n
i=1 Pi(xi), and therefore

∑

xn
1 ∈Xn

Q(xn1 ) logP (xn1 ) =
1

n

n∑

i=1

∑

xn
1 ∈Xn

Q(xn1 )
(

logP (i)(x(i)) + logPi(xi)
)

=
1

n

n∑

i=1

∑

xn
1 ∈Xn

Q(xn1 ) logP (i)(x(i)) +
1

n
Q(xn1 ) logP (xni ) .

Rearranging, we obtain

∑

xn
1 ∈Xn

Q(xn1 ) logP (xn1 ) =
1

n− 1

n∑

i=1

∑

xn
1 ∈Xn

Q(xn1 ) logP (i)(x(i))

=
1

n− 1

n∑

i=1

∑

x(i)∈Xn−1

Q(i)(x(i)) logP (i)(x(i))

where we used the defining property of Q(i). �

3.2 Tensorization of the Entropy

We are now prepared to prove the main exponential concentration inequalities
of these notes. Just as in Section 2, we let X1, . . . , Xn be independent random
variables, and investigate concentration properties of Z = g(X1, . . . , Xn). The
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basis of Ledoux’s entropy method is a powerful extension of Theorem 4. Note
that Theorem 4 may be rewritten as

Var(Z) ≤
n∑

i=1

� [ �
i(Z

2)− (
�
i(Z))2

]

or, putting φ(x) = x2,

�
φ(Z)− φ(

�
Z) ≤

n∑

i=1

�
[

�
iφ(Z)− φ(

�
i(Z))] .

As it turns out, this inequality remains true for a large class of convex functions
φ, see Beckner [64], Lata la and Oleszkiewicz [65], Ledoux [20], Boucheron, Bous-
quet, Lugosi, and Massart [29], and Chafäı [66]. The case of interest in our case
is when φ(x) = x log x. In this case, as seen in the proof below, the left-hand side
of the inequality may be written as the relative entropy between the distribution
induced by Z on X n and the distribution of Xn

1 . Hence the name “tensorization
inequality of the entropy”, (see, e.g., Ledoux [20]).

Theorem 9. Let φ(x) = x log x for x > 0. Let X1 . . . , Xn be independent ran-
dom variables taking values in X and let f be a positive-valued function on X n.
Letting Y = f(X1, . . . , Xn), we have

�
φ(Y )− φ(

�
Y ) ≤

n∑

i=1

�
[

�
iφ(Y )− φ(

�
i(Y ))] .

Proof. We only prove the statement for discrete random variables X1 . . . , Xn.
The extension to the general case is technical but straightforward. The theorem
is a direct consequence of Han’s inequality for relative entropies. First note that
if the inequality is true for a random variable Y then it is also true for cY where
c is a positive constant. Hence we may assume that

�
Y = 1. Now define the

probability measure Q on X n by

Q(xn1 ) = f(xn1 )P (xn1 )

where P denotes the distribution of Xn
1 = X1, . . . , Xn. Then clearly,

�
φ(Y )− φ(

�
Y ) =

�
[Y log Y ] = D(Q‖P )

which, by Theorem 8, does not exceed
∑n
i=1

(
D(Q‖P )−D(Q(i)‖P (i))

)
. How-

ever, straightforward calculation shows that

n∑

i=1

(
D(Q‖P )−D(Q(i)‖P (i))

)
=

n∑

i=1

�
[

�
iφ(Y )− φ(

�
i(Y ))]

and the statement follows. �
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The main idea in Ledoux’s entropy method for proving concentration in-
equalities is to apply Theorem 9 to the positive random variable Y = esZ . Then,
denoting the moment generating function of Z by F (s) =

�
[esZ ], the left-hand

side of the inequality in Theorem 9 becomes

s
� [

ZesZ
]
− � [

esZ
]

log
� [

esZ
]

= sF ′(s)− F (s) logF (s) .

Our strategy, then is to derive upper bounds for the derivative of F (s) and derive
tail bounds via Chernoff’s bounding. To do this in a convenient way, we need
some further bounds for the right-hand side of the inequality in Theorem 9. This
is the purpose of the next section.

3.3 Logarithmic Sobolev Inequalities

Recall from Section 2 that we denote Zi = gi(X1, . . . , Xi−1, Xi+1, . . . , Xn) where
gi is some function over X n−1. Below we further develop the right-hand side of
Theorem 9 to obtain important inequalities which serve as the basis in deriving
exponential concentration inequalities. These inequalities are closely related to
the so-called logarithmic Sobolev inequalities of analysis, see Ledoux [20, 67, 68],
Massart [23].

First we need the following technical lemma:

Lemma 2. Let Y denote a positive random variable. Then for any u > 0,

�
[Y log Y ]− (

�
Y ) log(

�
Y ) ≤ �

[Y log Y − Y log u− (Y − u)] .

Proof. As for any x > 0, log x ≤ x− 1, we have

log
u

�
Y
≤ u

�
Y
− 1 ,

hence
�
Y log

u
�
Y
≤ u− �

Y

which is equivalent to the statement. �

Theorem 10. a logarithmic sobolev inequality. Denote ψ(x) = ex−x−
1. Then

s
� [

ZesZ
]
− � [

esZ
]

log
� [

esZ
]
≤

n∑

i=1

� [
esZψ (−s(Z − Zi))

]
.

Proof. We bound each term on the right-hand side of Theorem 9. Note that
Lemma 2 implies that if Yi is a positive function of X1, . . . , Xi−1, Xi+1, . . . , Xn,
then

�
i(Y log Y )− �

i(Y ) log
�
i(Y ) ≤ �

i [Y (log Y − log Yi)− (Y − Yi)]
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Applying the above inequality to the variables Y = esZ and Yi = esZi , one gets

�
i(Y log Y )− �

i(Y ) log
�
i(Y ) ≤ �

i

[
esZψ(−s(Z − Z(i)))

]

and the proof is completed by Theorem 9. �

The following symmetrized version, due to Massart [23], will also be useful.
Recall that Z ′

i = g(X1, . . . , X
′
i, . . . , Xn) where the X ′

i are independent copies of
the Xi.

Theorem 11. symmetrized logarithmic sobolev inequality. If ψ is de-
fined as in Theorem 10 then

s
� [

ZesZ
]
− � [

esZ
]

log
� [

esZ
]
≤

n∑

i=1

� [
esZψ (−s(Z − Z ′

i))
]
.

Moreover, denote τ(x) = x(ex − 1). Then for all s ∈ �
,

s
� [

ZesZ
]
− � [

esZ
]

log
� [

esZ
]
≤

n∑

i=1

� [
esZτ(−s(Z − Z ′

i))
�

Z>Z′
i

]
,

s
� [

ZesZ
]
− � [

esZ
]

log
� [

esZ
]
≤

n∑

i=1

� [
esZτ(s(Z ′

i − Z))
�

Z<Z′
i

]
.

Proof. The first inequality is proved exactly as Theorem 10, just by noting
that, just like Zi, Z

′
i is also independent of Xi. To prove the second and third

inequalities, write

esZψ (−s(Z − Z ′
i)) = esZψ (−s(Z − Z ′

i))
�

Z>Z′
i

+ esZψ (s(Z ′
i − Z))

�

Z<Z′
i
.

By symmetry, the conditional expectation of the second term may be written as

�
i

[
esZψ (s(Z ′

i − Z))
�

Z<Z′
i

]
=

�
i

[
esZ

′
iψ (s(Z − Z ′

i))
�

Z>Z′
i

]

=
�
i

[
esZe−s(Z−Z′

i)ψ (s(Z − Z ′
i))

�

Z>Z′
i

]
.

Summarizing, we have

� [
esZψ (−s(Z − Z ′

i))
]

=
�
i

[(
ψ (−s(Z − Z ′

i)) + e−s(Z−Z′
i)ψ (s(Z − Z ′

i))
)
esZ

�

Z>Z′
i

]
.

The second inequality of the theorem follows simply by noting that ψ(x) +
exψ(−x) = x(ex − 1) = τ(x). The last inequality follows similarly. �
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3.4 First Example: Bounded Differences and More

The purpose of this section is to illustrate how the logarithmic Sobolev inequal-
ities shown in the previous section may be used to obtain powerful exponential
concentration inequalities. The first result is rather easy to obtain, yet it turns
out to be very useful. Also, its proof is prototypical, in the sense that it shows,
in a transparent way, the main ideas.

Theorem 12. Assume that there exists a positive constant C such that, almost
surely,

n∑

i=1

(Z − Z ′
i)

2 ≤ C .

Then for all t > 0,
�

[|Z − �
Z| > t] ≤ 2e−t

2/4C .

Proof. Observe that for x > 0, τ(−x) ≤ x2, and therefore, for any s > 0,
Theorem 11 implies

s
� [

ZesZ
]
− � [

esZ
]

log
� [

esZ
]
≤ �

[
esZ

n∑

i=1

s2(Z − Z ′
i)

2 �

Z>Z′
i

]

≤ s2 �

[
esZ

n∑

i=1

(Z − Z ′
i)

2

]

≤ s2C � [
esZ
]
,

where at the last step we used the assumption of the theorem. Now denoting the
moment generating function of Z by F (s) =

� [
esZ
]
, the above inequality may

be re-written as
sF ′(s)− F (s) logF (s) ≤ Cs2F (s) .

After dividing both sides by s2F (s), we observe that the left-hand side is just
the derivative of H(s) = s−1 logF (s), that is, we obtain the inequality

H ′(s) ≤ C .

By l’Hospital’s rule we note that lims→0H(s) = F ′(0)/F (0) =
�
Z, so by inte-

grating the above inequality, we get H(s) ≤ �
Z + sC, or in other words,

F (s) ≤ es � Z+s2C .

Now by Markov’s inequality,

�
[Z >

�
Z + t] ≤ F (s)e−s � Z−st ≤ es2C−st .

Choosing s = t/2C, the upper bound becomes e−t
2/4C . Replace Z by −Z to

obtain the same upper bound for
�

[Z <
�
Z − t]. �
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Remark. It is easy to see that the condition of Theorem 12 may be relaxed in
the following way: if

�

[
n∑

i=1

(Z − Z ′
i)

2 �

Z>Z′
i

∣∣∣X
]
≤ c

then for all t > 0,
�

[Z >
�
Z + t] ≤ e−t2/4c

and if
�

[
n∑

i=1

(Z − Z ′
i)

2 �

Z′
i>Z

∣∣∣X
]
≤ c ,

then
�

[Z <
�
Z − t] ≤ e−t2/4c .

An immediate corollary of Theorem 12 is a subgaussian tail inequality for
functions of bounded differences.

Corollary 4. bounded differences inequality. Assume the function g sat-
isfies the bounded differences assumption with constants c1, . . . , cn, then

�
[|Z − �

Z| > t] ≤ 2e−t
2/4C

where C =
∑n
i=1 c

2
i .

We remark here that the constant appearing in this corollary may be im-
proved. Indeed, using the martingale method, McDiarmid [2] showed that under
the conditions of Corollary 4,

�
[|Z − �

Z| > t] ≤ 2e−2t2/C

(see the exercises). Thus, we have been able to extend Corollary 1 to an expo-
nential concentration inequality. Note that by combining the variance bound of
Corollary 1 with Chebyshev’s inequality, we only obtained

�
[|Z − �

Z| > t] ≤ C

2t2

and therefore the improvement is essential. Thus the applications of Corollary 1
in all the examples shown in Section 2.1 are now improved in an essential way
without further work.

However, Theorem 12 is much stronger than Corollary 4. To understand why,
just observe that the conditions of Theorem 12 do not require that g has bounded
differences. All that’s required is that

sup
x1,...,xn,
x′
1,...,x

′
n∈X

n∑

i=1

|g(x1, . . . , xn)− g(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)|2 ≤

n∑

i=1

c2i ,

an obviously much milder requirement.
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3.5 Exponential Inequalities for Self-bounding Functions

In this section we prove exponential concentration inequalities for self-bounding
functions discussed in Section 2.2. Recall that a variant of the Efron-Stein in-
equality (Theorem 2) implies that for self-bounding functions Var(Z) ≤ �

(Z) .
Based on the logarithmic Sobolev inequality of Theorem 10 we may now obtain
exponential concentration bounds. The theorem appears in Boucheron, Lugosi,
and Massart [25] and builds on techniques developed by Massart [23].

Recall the definition of following two functions that we have already seen in
Bennett’s inequality and in the logarithmic Sobolev inequalities above:

h (u) = (1 + u) log (1 + u)− u (u ≥ −1),

and ψ(v) = sup
u≥−1

[uv − h(u)] = ev − v − 1 .

Theorem 13. Assume that g satisfies the self-bounding property. Then for every
s ∈ �

,

log
�
[
es(Z− � Z)

]
≤ �

Zψ(s) .

Moreover, for every t > 0,

�
[Z ≥ �

Z + t] ≤ exp

[
− �

Zh

(
t

�
Z

)]

and for every 0 < t ≤ �
Z,

�
[Z ≤ �

Z − t] ≤ exp

[
− �

Zh

(
− t

�
Z

)]

By recalling that h(u) ≥ u2/(2 + 2u/3) for u ≥ 0 (we have already used this
in the proof of Bernstein’s inequality) and observing that h(u) ≥ u2/2 for u ≤ 0,
we obtain the following immediate corollaries: for every t > 0,

�
[Z ≥ �

Z + t] ≤ exp

[
− t2

2
�
Z + 2t/3

]

and for every 0 < t ≤ �
Z,

�
[Z ≤ �

Z − t] ≤ exp

[
− t2

2
�
Z

]
.

Proof. We apply Lemma 10. Since the function ψ is convex with ψ (0) = 0, for
any s and any u ∈ [0, 1] , ψ(−su) ≤ uψ(−s). Thus, since Z−Zi ∈ [0, 1], we have
that for every s, ψ(−s (Z − Zi)) ≤ (Z − Zi)ψ(−s) and therefore, Lemma 10 and
the condition

∑n
i=1(Z − Zi) ≤ Z imply that

s
� [

ZesZ
]
− � [

esZ
]

log
� [

esZ
]
≤ �

[
ψ(−s)esZ

n∑

i=1

(Z − Zi)
]

≤ ψ(−s) � [
ZesZ

]
.
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Introduce Z̃ = Z − �
[Z] and define, for any s, F̃ (s) =

�
[
es

eZ
]
. Then the

inequality above becomes

[s− ψ(−s)] F̃
′(s)

F̃ (s)
− log F̃ (s) ≤ �

Zψ(−s) ,

which, writing G(s) = logF (s), implies

(
1− e−s

)
G′ (s)−G (s) ≤ �

Zψ (−s) .

Now observe that the functionG0 =
�
Zψ is a solution of the ordinary differential

equation (1− e−s)G′ (s) − G (s) =
�
Zψ (−s). We want to show that G ≤ G0.

In fact, if G1 = G−G0, then

(
1− e−s

)
G′

1 (s)−G1 (s) ≤ 0. (2)

Hence, defining G̃(s) = G1 (s) /(es − 1), we have

(
1− e−s

)
(es − 1) G̃′(s) ≤ 0.

Hence G̃′ is non-positive and therefore G̃ is non-increasing. Now, since Z̃ is
centered G′

1 (0) = 0. Using the fact that s(es−1)−1 tends to 1 as s goes to 0, we
conclude that G̃(s) tends to 0 as s goes to 0. This shows that G̃ is non-positive
on (0,∞) and non-negative over (−∞, 0), hence G1 is everywhere non-positive,
therefore G ≤ G0 and we have proved the first inequality of the theorem. The
proof of inequalities for the tail probabilities may be completed by Chernoff’s
bounding:

�
[Z − �

[Z] ≥ t] ≤ exp

[
− sup
s>0

(ts− �
Zψ (s))

]

and
�

[Z − �
[Z] ≤ −t] ≤ exp

[
− sup
s<0

(−ts− �
Zψ (s))

]
.

The proof is now completed by using the easy-to-check (and well-known) rela-
tions

sup
s>0

[ts− �
Zψ (s)] =

�
Zh (t/

�
Z) for t > 0

sup
s<0

[−ts− �
Zψ(s)] =

�
Zh(−t/ �

Z) for 0 < t ≤ �
Z.

�

3.6 VC Entropy

Theorems 2 and 13 provide concentration inequalities for functions having the
self-bounding property. In Section 2.2 several examples of such functions are
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discussed. The purpose of this section is to show that the so-called vc entropy
is a self-bounding function.

The Vapnik-Chervonenkis (or vc) entropy is closely related to the vc dimen-
sion discussed in Section 2.2. Let A be an arbitrary collection of subsets of X ,
and let xn1 = (x1, . . . , xn) be a vector of n points of X . Recall that the shatter

coefficient is defined as the size of the trace of A on xn1 , that is,

T (xn1 ) = |tr(xn1 )| = |{A ∩ {x1, . . . , xn} : A ∈ A}| .
The vc entropy is defined as the logarithm of the shatter coefficient, that is,

h(xn1 ) = log2 T (xn1 ) .

Lemma 3. The vc entropy has the self-bounding property.

Proof. We need to show that there exists a function h′ of n − 1 variables
such that for all i = 1, . . . , n, writing x(i) = (x1, . . . , xi−1, xi+1, . . . , xn), 0 ≤
h(xn1 )− h′(x(i)) ≤ 1 and

n∑

i=1

(
h(xn1 )− h′(x(i))

)
≤ h(xn1 ).

We define h′ the natural way, that is, as the entropy based on the n− 1 points
in its arguments. Then clearly, for any i, h′(x(i)) ≤ h(xn1 ), and the difference
cannot be more than one. The nontrivial part of the proof is to show the second
property. We do this using Han’s inequality (Theorem 7).

Consider the uniform distribution over the set tr(xn1 ). This defines a random
vector Y = (Y1, . . . , Yn) ∈ Yn. Then clearly,

h(xn1 ) = log2 |tr(xn1 )(x)| = 1

ln 2
H(Y1, . . . , Yn)

where H(Y1, . . . , Yn) is the (joint) entropy of Y1, . . . , Yn. Since the uniform dis-
tribution maximizes the entropy, we also have, for all i ≤ n, that

h′(x(i)) ≥ 1

ln 2
H(Y1, . . . , Yi−1, Yi+1, . . . , Yn).

Since by Han’s inequality

H(Y1, . . . , Yn) ≤ 1

n− 1

n∑

i=1

H(Y1, . . . , Yi−1, Yi+1, . . . , Yn),

we have
n∑

i=1

(
h(xn1 )− h′(x(i))

)
≤ h(xn1 )

as desired. �

The above lemma, together with Theorems 2 and 12 immediately implies the
following:
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Corollary 5. Let X1, . . . , Xn be independent random variables taking their val-
ues in X and let Z = h(Xn

1 ) denote the random vc entropy. Then Var(Z) ≤
�

[Z], for t > 0

�
[Z ≥ �

Z + t] ≤ exp

[
− t2

2
�
Z + 2t/3

]
,

and for every 0 < t ≤ �
Z,

�
[Z ≤ �

Z − t] ≤ exp

[
− t2

2
�
Z

]
.

Moreover, for the random shatter coefficient T (Xn
1 ), we have

�
log2 T (Xn

1 ) ≤ log2

�
T (Xn

1 ) ≤ log2 e
�

log2 T (Xn
1 ) .

Note that the left-hand side of the last statement follows from Jensen’s in-
equality, while the right-hand side by taking s = ln 2 in the first inequality of The-
orem 13. This last statement shows that the expected vc entropy

�
log2 T (Xn

1 )
and the annealed vc entropy are tightly connected, regardless of the class of sets
A and the distribution of the Xi’s. We note here that this fact answers, in a
positive way, an open question raised by Vapnik [69, pages 53–54]: the empirical
risk minimization procedure is non-trivially consistent and rapidly convergent if
and only if the annealed entropy rate (1/n) log2

�
[T (X)] converges to zero. For

the definitions and discussion we refer to [69].

3.7 Variations on the Theme

In this section we show how the techniques of the entropy method for proving
concentration inequalities may be used in various situations not considered so
far. The versions differ in the assumptions on how

∑n
i=1(Z − Z ′

i)
2 is controlled

by different functions of Z. For various other versions with applications we refer
to Boucheron, Lugosi, and Massart [26]. In all cases the upper bound is roughly

of the form e−t
2/σ2

where σ2 is the corresponding Efron-Stein upper bound on
Var(Z). The first inequality may be regarded as a generalization of the upper
tail inequality in Theorem 13.

Theorem 14. Assume that there exist positive constants a and b such that

n∑

i=1

(Z − Z ′
i)

2 �

Z>Z′
i
≤ aZ + b .

Then for s ∈ (0, 1/a),

log
�

[exp(s(Z − �
[Z]))] ≤ s2

1− as (a
�
Z + b)

and for all t > 0,

� {Z >
�
Z + t} ≤ exp

( −t2
4a

�
Z + 4b+ 2at

)
.
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Proof. Let s > 0. Just like in the first steps of the proof of Theorem 12, we use
the fact that for x > 0, τ(−x) ≤ x2, and therefore, by Theorem 11 we have

s
� [

ZesZ
]
− � [

esZ
]

log
� [

esZ
]
≤ �

[
esZ

n∑

i=1

(Z − Z ′
i)

2 �

Z>Z′
i

]

≤ s2
(
a

� [
ZesZ

]
+ b

� [
esZ
])

,

where at the last step we used the assumption of theorem.
Denoting, once again, F (s) =

� [
esZ
]
, the above inequality becomes

sF ′(s)− F (s) logF (s) ≤ as2F ′(s) + bs2F (s) .

After dividing both sides by s2F (s), once again we see that the left-hand side is
just the derivative of H(s) = s−1 logF (s), so we obtain

H ′(s) ≤ a(logF (s))′ + b .

Using the fact that lims→0H(s) = F ′(0)/F (0) =
�
Z and logF (0) = 0, and

integrating the inequality, we obtain

H(s) ≤ �
Z + a logF (s) + bs ,

or, if s < 1/a,

log
�

[s(Z − �
[Z])] ≤ s2

1− as (a
�
Z + b) ,

proving the first inequality. The inequality for the upper tail now follows by
Markov’s inequality and the following technical lemma whose proof is left as an
exercise. �

Lemma 4. Let C and a denote two positive real numbers and denote h1(x) =
1 + x−

√
1 + 2x. Then

sup
λ∈[0,1/a)

(
λt− Cλ2

1− aλ

)
=

2C

a2
h1

(
at

2C

)
≥ t2

2
(
2C + at

)

and the supremum is attained at

λ =
1

a

(
1−

(
1 +

at

C

)−1/2
)

.

Also,

sup
λ∈[0,∞)

(
λt− Cλ2

1 + aλ

)
=

2C

a2
h1

(−at
2C

)
≥ t2

4C

if t < C/a and the supremum is attained at

λ =
1

a

((
1− at

C

)−1/2

− 1

)
.
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There is a subtle difference between upper and lower tail bounds. Bounds
for the lower tail

� {Z <
�
Z − t} may be easily derived, due to Chebyshev’s

association inequality which states that if X is a real-valued random variable
and f is a nonincreasing and g is a nondecreasing function, then

�
[f(X)g(X)] ≤ �

[f(X)]
�

[g(X)]| .

Theorem 15. Assume that for some nondecreasing function g,

n∑

i=1

(Z − Z ′
i)

2 �

Z<Z′
i
≤ g(Z) .

Then for all t > 0,

�
[Z <

�
Z − t] ≤ exp

( −t2
4

�
[g(Z)]

)
.

Proof. To prove lower-tail inequalities we obtain upper bounds for F (s) =
�

[exp(sZ)] with s < 0. By the third inequality of Theorem 11,

s
� [

ZesZ
]
− � [

esZ
]

log
� [

esZ
]

≤
n∑

i=1

� [
esZτ(s(Z ′

i − Z))
�

Z<Z′
i

]

≤
n∑

i=1

� [
esZs2(Z ′

i − Z)2
�

Z<Z′
i

]

(using s < 0 and that τ(−x) ≤ x2 for x > 0)

= s2
�

[
esZ

n∑

i=1

(Z − Z ′
i)

2 �

Z<Z′
i

]

≤ s2 � [
esZg(Z)

]
.

Since g(Z) is a nondecreasing and esZ is a decreasing function of Z, Chebyshev’s
association inequality implies that

� [
esZg(Z)

]
≤ � [

esZ
] �

[g(Z)] .

Thus, dividing both sides of the obtained inequality by s2F (s) and writing
H(s) = (1/s) logF (s), we obtain

H ′(s) ≤ �
[g(Z)] .

Integrating the inequality in the interval [s, 0) we obtain

F (s) ≤ exp(s2
�

[g(Z)] + s
�

[Z]) .

Markov’s inequality and optimizing in s now implies the theorem. �
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The next result is useful when one is interested in lower-tail bounds but∑n
i=1(Z − Z ′

i)
2 �

Z<Z′
i

is difficult to handle. In some cases
∑n
i=1(Z − Z ′

i)
2 �

Z>Z′
i

is easier to bound. In such a situation we need the additional guarantee that
|Z−Z ′

i| remains bounded. Without loss of generality, we assume that the bound
is 1.

Theorem 16. Assume that there exists a nondecreasing function g such that∑n
i=1(Z − Z ′

i)
2 �

Z>Z′
i
≤ g(Z) and for any value of Xn

1 and Xi
′, |Z − Z ′

i| ≤ 1.
Then for all K > 0, s ∈ [0, 1/K)

log
� [

exp(−s(Z − �
[Z]))

]
≤ s2 τ(K)

K2

�
[g(Z)] ,

and for all t > 0, with t ≤ (e− 1)
�

[g(Z)] we have

�
[Z <

�
Z − t] ≤ exp

(
− t2

4(e− 1)
�

[g(Z)]

)
.

Proof. The key observation is that the function τ(x)/x2 = (ex − 1)/x is in-
creasing if x > 0. Choose K > 0. Thus, for s ∈ (−1/K, 0), the second inequality
of Theorem 11 implies that

s
� [

ZesZ
]
− � [

esZ
]

log
� [

esZ
]
≤

n∑

i=1

�
[
esZτ(−s(Z − Z(i)))

�

Z>Z′
i

]

≤ s2 τ(K)

K2

�

[
esZ

n∑

i=1

(Z − Z(i))2
�

Z>Z′
i

]

≤ s2 τ(K)

K2

� [
g(Z)esZ

]
,

where at the last step we used the assumption of the theorem.
Just like in the proof of Theorem 15, we bound

� [
g(Z)esZ

]
by

�
[g(Z)]

� [
esZ
]
.

The rest of the proof is identical to that of Theorem 15. Here we took K = 1. �

Finally we give, without proof, an inequality (due to Bousquet [28]) for
functions satisfying conditions similar but weaker than the self-bounding con-
ditions. This is very useful for suprema of empirical processes for which the
non-negativity assumption does not hold.

Theorem 17. Assume Z satisfies
∑n
i=1 Z − Zi ≤ Z, and there exist random

variables Yi such that for all i = 1, . . . , n, Yi ≤ Z − Zi ≤ 1, Yi ≤ a for some
a > 0 and

�
iYi ≥ 0. Also, let σ2 be a real number such that

σ2 ≥ 1

n

n∑

i=1

�
i[Y

2
i ] .
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We obtain for all t > 0,

� {Z ≥ �
Z + t} ≤ exp

(
−vh

(
t

v

))
,

where v = (1 + a)
�
Z + nσ2.

An important application of the above theorem is the following version of Tala-
grand’s concentration inequality for empirical processes. The constants appear-
ing here were obtained by Bousquet [27].

Corollary 6. Let F be a set of functions that satisfy
�
f(Xi) = 0 and supf∈F

sup f ≤ 1. We denote

Z = sup
f∈F

n∑

i=1

f(Xi) .

Let σ be a positive real number such that nσ2 ≥ ∑n
i=1 supf∈F

�
[f2(Xi)], then

for all t ≥ 0, we have

� {Z ≥ �
Z + t} ≤ exp

(
−vh

(
t

v

))
,

with v = nσ2 + 2
�
Z.
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4. Ahlswede, R., Gács, P., Körner, J.: Bounds on conditional probabilities with ap-
plications in multi-user communication. Zeitschrift für Wahrscheinlichkeitstheorie
und verwandte Gebiete 34 (1976) 157–177 (correction in 39:353–354,1977).

5. Marton, K.: A simple proof of the blowing-up lemma. IEEE Transactions on
Information Theory 32 (1986) 445–446

6. Marton, K.: Bounding d̄-distance by informational divergence: a way to prove
measure concentration. Annals of Probability 24 (1996) 857–866

7. Marton, K.: A measure concentration inequality for contracting Markov chains.
Geometric and Functional Analysis 6 (1996) 556–571 Erratum: 7:609–613, 1997.

8. Dembo, A.: Information inequalities and concentration of measure. Annals of
Probability 25 (1997) 927–939

9. Massart, P.: Optimal constants for Hoeffding type inequalities. Technical report,
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