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Abstract
We propose an algorithm for selectively removing examples from the
training set using probabilistic estimates related to editing algorithms
(Devijver and Kittler, 1982). The procedure creates a separable distribu-
tion of training examples with minimal impact on the decision boundary
position. It breaks the linear dependency between the number of SVs and
the number of training examples, and sharply reduces the complexity of
SVMs during both the training and prediction stages.

1 Introduction

The number of Support Vectors (SVs) has a dramatic impact on the efficiency of Support
Vector Machines (SVM) (Vapnik, 1995) during both the learning and prediction stages.
Recent results (Steinwart, 2004) indicate that the number k of SVs increases linearly with
the number n of training examples. More specifically,

k/n −→ 2BK (1)
where n is the number of training examples and BK is the smallest classification error
achievable with the SVM kernel K. When using a universal kernel such as the Radial Basis
Function kernel, BK is the Bayes risk B, i.e. the smallest classification error achievable with
any decision function.
The computational requirements of modern SVM training algorithms (Joachims, 1999;
Chang and Lin, 2001) are very largely determined by the amount of memory required to
store the active segment of the kernel matrix. When this amount exceeds the available
memory, the training time increases quickly because some kernel matrix coefficients must
be recomputed multiple times. During the final phase of the training process, the active
segment always contains all the k(k + 1)/2 dot products between SVs. Steinwart’s result
(1) then suggests that the critical amount of memory scales at least like B2n2. This can be
practically prohibitive for problems with either big training sets or large Bayes risk (noisy
problems). Large numbers of SVs also penalize SVMs during the prediction stage as the
computation of the decision function requires a time proportional to the number of SVs.
When the problem is separable, i.e. B = 0, equation (1) suggests1 that the number k of
SVs increases less than linearly with the number n of examples. This improves the scaling
laws for the SVM computational requirements.

1See also (Steinwart, 2004, remark 3.8)



In this paper, we propose to selectively remove examples from the training set using prob-
abilistic estimates inspired by training set editing algorithms (Devijver and Kittler, 1982).
The removal procedure aims at creating a separable distribution of training examples with-
out modifying the location of the decision boundary. It effectively breaks the linear depen-
dency between the number of SVs and the number of training examples.

2 Related work

2.1 Salient facts about SVMs

We focus now on the C-SVM applied to the two-class pattern recognition problem. See
(Burges, 1998) for a concise reference. Given n training patterns xi and their associated
classes yi = ±1, the SVM decision function is:

f(x) =

n
∑

i=1

α∗

i yiK(xi, x) + b∗ (2)

The coefficient α∗
i in (2) are obtained by solving a quadratic programing problem:

α∗ = arg max
α

∑

i

αi −
1

2

∑

i,j

αiαjyiyjK(xi, xj) (3)

subject to ∀i, 0 ≤ αi ≤ C and
∑

i

αiyi = 0

This optimization yields three categories of training examples depending on α∗
i . Within

each category, the possible values of the margins yif(xi) are prescribed by the Karush-
Kuhn-Tucker optimality conditions.

- Examples such that α∗
i = C are called bouncing SVs or margin errors and satisfy

yif(xi) < 1. The set of bouncing SVs includes all training examples misclassified
by the SVM, i.e. those which have a negative margin yif(xi) < 0.

- Examples such that 0 < α∗
i < C are called ordinary SVs and satisfy yif(xi) = 1.

- Examples such that α∗
i = 0 satisfy relation yif(xi) > 1. These examples play no

role in the SVM decision function (2). Retraining after discarding these examples
would still yield the same SVM decision function (2).

These facts provide some insight into Steinwart’s result (1). The SVM decision function,
like any other decision rule, must asymptotically misclassify at least Bn examples, where
B is the Bayes risk. All these examples must therefore become bouncing SVs.
To illustrate dependence on the Bayes risk, we perform a linear classification task in two
dimensions under varying amount of class overlap. The class distributions were uniform
on a unit square with centers c1 and c2. Varying the distance between c1 and c2 allows us
to control the Bayes risk. The results are shown in figure 1.

2.2 A posteriori reduction of the number of SVs.

Several techniques aim to reduce the prediction complexity of SVMs by expressing the
SVM solution (2) with a smaller kernel expansion. Since one must compute the SVM so-
lution before applying these post-processing techniques, they are not suitable for reducing
the complexity of the training stage.

Reduced Set Construction. Burges (Burges, 1996) proposes to construct new patterns
zj in order to define a compact approximation of the decision function (2). Reduced set
construction usually involves solving a non convex optimization problem and is not appli-
cable on arbitrary inputs such as graphs or strings.
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Figure 1: Effect of noise on the number of sup-
port vectors. The number of ordinary SVs stays
almost constant where as the number of bounc-
ing SVs grows. Additional support vectors do
not gain information as indicated by the rank of
the kernel matrix. See section 2.1.
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Figure 2: Histogram of SVs selected by the
`1 penalization method on the MNIST 3-8 dis-
crimination task. The initial SVs have been or-
dered on the x-axis by increasing margin yf(x)
and decreasing α. See last paragraph in section
2.2.

Reduced Set Selection. The set of basis2 functions K(xi, ·) associated with the SVs xi

do not necessarily constitute a linearly independent family. The same decision function f(·)
can then be expressed by multiple linear combination of the functions K(xi, ·). Reduced
set selection methods attempt to select a subset of the SVs that is sufficient to express
the SVM decision function. For instance, (Downs, Gates and Masters, 2001) propose to
compute the row echelon form of the kernel matrix and discard SVs that lead to zero rows.
This approach maintains the original SVM decision function.
In contrast, the `1 penalization method suggested in (Schölkopf and Smola, 2002,
sect. 18.4.2) simply attempts to construct a sufficiently good approximation of the origi-
nal SVM decision function by solving

arg min
β

∥

∥

∥

∥

∥

∑

i

α∗

i yiK(xi, ·) −
∑

i

βiyiK(xi, ·)

∥

∥

∥

∥

∥

2

K

+ λ
∑

i

|βi| (4)

where parameter λ trades accuracy versus sparsity, and ‖·‖
K

denotes the Reproducing Ker-
nel Hilbert Space norm (Schölkopf and Smola, 2002, definition 2.9). Simplifying expres-
sion (4) yields a numerically tractable quadratic programming problem.

Which examples are selected? We have investigated the `1 penalization method (4) as
follows. We train a first SVM to discriminate digits 3 and 8 on the MNIST dataset (see
section 4.2) after randomly swapping 10% of the class labels in the training set. We then
select a subset of the resulting support vectors using the `1 penalization method.
Choosing λ is quite difficult in practice. To evaluate the accuracy of the procedure, we train
a second SVM on the selected vectors, compare its recognition accuracy with that of the
first SVM. This was best achieved by enforcing the constraint βi ≥ 0 in (4) because the
second SVM cannot return an expansion with negative coefficients.
Figure 2 shows the histogram of selected SVs. The initial support vectors have been or-
dered on the x-axis by increasing values of yif(xi), and, in the case of margin SVs, by
decreasing values of αi. The selected SVs includes virtually no misclassified SVs, but
instead concentrates on SVs with large αi.
This result suggests that simple pre-processing methods might indicate which training ex-
amples are really critical for SVM classification.

2We use the customary name basis functions despite linear dependence. . .



2.3 Training set editing techniques

We now consider techniques for reducing the set of training examples before running a
training algorithm. Reducing the amount of training data is indeed an obvious way to
reduce the complexity of training. Quantization and clustering methods might be used to
achieve this goal. These methods however reduce the training data without considering the
loss function of interest, and therefore sacrifice classification accuracy. We focus instead
on editing techniques, i.e. techniques for discarding selected training examples with the
aim of achieving similar or better classification accuracy.
Two prototypical editing techniques, MULTIEDIT and CONDENSE, have been thoroughly
studied (Devijver and Kittler, 1982, chapter 3) in the context of the nearest neighbor (1-
NN) classification rule.

Removing interior examples. The CONDENSE algorithm was first described by (Hart,
1968). This algorithm selects a subset of the training examples whose 1-NN decision
boundary still classifies correctly all of the initial training examples:
Algorithm 1 (CONDENSE).

1 Select a random training example and put it in set R.

2 For each training example i = 1, . . . , n : classify example i using the 1-NN rule with set
R as the training set, and insert it into R if it is misclassified.

3 Return to step 2 if R has been modified during the last pass.

4 The final contents of R constitute the condensed training set.

This is best understood when both classes form homogeneous clusters in the feature space.
Algorithm 1 discards training examples located in the interior of each cluster.
This strategy works poorly when there is a large overlap between the pattern distributions
of both classes, that is to say when the Bayes risk B is large. Consider for instance a feature
space region where P (y = +1 | x) > P (y = −1 | x) > 0. A small number of training
examples of class y = −1 can still appear in such a region. We say that they are located on
the wrong side of the Bayes decision boundary. Asymptotically, all such training examples
belong to the condensed training set in order to ensure that they are properly recognized as
members of class y = −1.

Removing noise examples. The Edited Nearest Neighbor rule (Wilson, 1972) suggests
to first discard all training examples that are misclassified when applying the 1-NN rule
using all n − 1 remaining examples as the training set. It was shown that removing these
examples improves the asymptotic performance of the nearest neighbor rule. Whereas
the 1-NN risk is asymptotically bounded by 2B, the Edited 1-NN risk is asymptotically
bounded by 1.2 B, where B is the Bayes risk.
The MULTIEDIT algorithm (Devijver and Kittler, 1982, section 3.11) asymptotically dis-
cards all the training examples located on the wrong side of the Bayes decision boundary.
The asymptotic risk of the multi-edited nearest neighbor rule is the Bayes risk B.
Algorithm 2 (MULTIEDIT).

1 Divide randomly the training data into s splits S1, . . . ,Ss. Let us call fi the 1-NN classifier
that uses Si as the training set.

2 Classify all examples in Si using the classifier f(i+1) mod s and discard all misclassified
examples.

3 Gather all the remaining examples and return to step 1 if any example has been discarded
during the last T iterations.

4 The remaining examples constitute the multiedited training set.

By discarding examples located on the wrong side of the Bayes decision boundary, algo-
rithm MULTIEDIT constructs a new training set whose apparent distribution has the same
Bayes decision boundary as the original problem, but with Bayes risk equal to 0. Devijver



and Kittler claim that MULTIEDIT produces an ideal training set for CONDENSE.
Algorithm MULTIEDIT also discards a some training examples located on the right side of
Bayes decision boundary. Asymptotically this makes no difference. When the training set
size is limited, this can have a negative impact on the error rates.

2.4 Editing algorithms and SVMs

Training examples recognized with high confidence usually do not appear in the SVM
solution (2) because they do not become support vectors. Intuitively, SVMs display the
properties of the CONDENSE algorithm. On the other hand, noise examples always become
support vectors. In that respect, SVMs lack the properties of the MULTIEDIT algorithm.

This contribution is an empirical attempt to endow SVMs with the prop-
erties of the MULTIEDIT algorithm. The resulting algorithm breaks the
linear relation between number of SVs and number of examples.

Of course, the mathematical proofs for the properties of MULTIEDIT or CONDENSE depend
of the specific nature of the 1-NN classification rule. Yet the algorithms themselves could
be identically defined for any classification rule. This suggests (but does not prove) that
the validity of these algorithms might extend to other classifiers. Further comfort comes
from the knowledge that a SVM with the RBF kernel and without bias term3 implements
the 1-NN rule when the RBF radius tends to zero.

3 Cross-Training

In this section we introduce the Cross-Training SVM, loosely inspired by the training set
editing algorithms of section 2.3. Cross-Training begins with partitioning the training set
randomly into s subsets of size r and training independent SVM on each subset Si. The
decision functions of these SVMs are then used to discard two types of training examples,
namely those which are confidently recognized (as in CONDENSE), and those with are
misclassified (as in MULTIEDIT). A final SVM is trained using the remaining examples.

Algorithm 3 (CROSSTRAINING).
1 Split the data into s non-overlapping subsets of equal size, S1, . . . ,Ss.

2 Train s independent SVMs f1, . . . , fs using each of the subsets as the training set.

3 For each training example (xi, yi) compute the average margin mi = 1
s

∑

s

r=1 yifr(xi).

4 Discard all training examples such that mi < 0 or mi > 1.

5 Train a final SVM on the remaining training examples.

We call this method Cross-Training because each independent random split is used to make
predictions on the remaining data, similar to Cross-Validation.

Selecting parameter C. Cross-Training also provides an elegant way to set the SVM
parameter C for both the first stage SVMs and the second stage SVM.

1. We believe that the first stage SVMs should be made as accurate as possible. For
each considered value of C, we train each first stage SVMs on its specific subset,
and evaluate its error rate using the remaining s − 1 subsets as testing examples.
We choose the value of C that yields the smallest error rate.

2. The apparent distribution of the edited training set is meant to have Bayes risk 0.
Therefore the second stage SVM is a Hard-Margin SVM (C = ∞).

3We mean a SVM whose solution (2) does not include a bias parameter b∗. This is equivalent
to dropping the equality constraint in the quadratic problem (3). A more complete discussion on the
impact of the bias parameter is clearly beyond the scope of this paper.
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Figure 3: Comparing LIBSVM and Cross-Training on a toy problem of two Gaussian clouds for
increasing number of training points. Cross-Training gives a constant number of support vectors (left
figure) for increasing training set size, whereas in LIBSVM the number of support vectors increases
linearly. The error rates behave similarly (middle figure), and Cross-Training gives an improved
training time (right figure). See section 4.1.

Relation with robust statistics. This editing stage of Cross-Training implicitly modifies
the SVM loss function in a way that relates to robust statistics. Editing alters the appar-
ent distribution of training examples such that the class distributions P (x | y = 1) and
P (x | y = −1) no longer overlap. If the class distributions were known, this could be
done by trimming the tails of the class distributions. A similar effect could be obtained by
altering the SVM loss function (the hinge loss) into a more robust loss function that gives
less weight to examples with negative margin. This is however difficult to tune, and can
lead to a non convex optimization problem.

4 Experiments
4.1 Toy Experiments

We first constructed artificial data, by generating two classes from two Gaussian clouds in
10 dimensions with means (1, 1, 1, 1, 1, 0, 0, 0, 0, 0) and (−1,−1,−1,−1,−1, 0, 0, 0, 0, 0)
and standard deviation 4. We trained a linear SVM for differing amounts of training points,
selecting C via cross validation. We compare the performance of LIBSVM4 with Cross-
Training using LIBSVM with s = 5, averaging over 10 splits. The results given in figure
3 show a reduction in SVs and computation time using Cross-Training, with no loss in
accuracy.

4.2 MNIST experiments

Our second experiment involves the discrimination of digits 3 and 8 in the MNIST5

database. Artificial noise was introduced by swapping the labels of 0%, 5%, 10% and
15% of the examples. There are 11982 training examples and 1984 testing examples. All
experiments were carried out using LIBSVM’s ν-SVM (Chang and Lin, 2001) with the
RBF kernel (γ = 0.005). Cross-Training was carried out by splitting the 11982 training
examples into 5 subsets. Figure 4 reports our results for various amounts of label noise.
The number of SVs (left figure) increases linearly for the standard SVM and stays constant
for the Cross-Training SVM. The test errors (middle figure) seem similar. Since our label
noise is artificial, we can also measure the misclassification rate on the unmodified test-
ing set (right figure). This measurement shows a slight loss of accuracy without statistical
significance.

4http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
5http://yann.lecun.com/exdb/mnist
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last graph (right figure) shows the test error measured without label noise. See section 4.2.
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Figure 5: Cross-Training vs standard SVM training for varying training set sizes on the forest cover
type database. See section 4.3.

4.3 Forest experiments

Finally, we apply our algorithm to a large scale problem. The UCI Forest Cover Type
dataset6 contains 581012 observations with 54 attributes. All attributes were rescaled in
range [−1, 1]. We randomly selected 50000 testing examples. The remaining observations
were used as training examples. Cross-Training was performed with s = 5 splits. SVM
parameters were determined by 5-fold cross-validation on 10000 training examples (C0 =
150, RBF kernel, γ = 4). The full SVM and Cross-Training first stage SVMs were trained
with C = C0. The Cross-Training second stage SVM was trained with both C = ∞ and
C = C0 because LIBSVM scales poorly when C = ∞ despite the small number of SVs7.
Figure 5 compares the number of SVs, the error rates, and the training times for plain
SVMs, Cross-Training with C = C0 in the second stage, and Cross-Training with hard
margin (C = ∞) in the second stage for training sets of sizes 10000 to 100000. Because of
long computing times, we do not report plain SVM results beyond 50000 examples. With
the hard-margin second stage, Cross-Training drastically reduces the number of SVs, while
sacrificing less than 1% on accuracy.

6ftp://ftp.ics.uci.edu/pub/machine-learning-databases/covtype
7See also the anomaly in figure 3 (right).



5 Discussion

We have introduced a simple Cross-Training method for breaking the linear relationship
between number of support vectors and number of examples. This method sharply reduces
both the training and recognition time. Cross-training apparently causes a minor loss of
accuracy, comparable to that of reduced set methods (Burges, 1996). On the other hand,
Cross-training provides a practical means to use much larger training sets.
This work raises interesting theoretical questions regarding the significance of training set
editing ideas in the context of SVMs. With better theoretical understanding should come
better algorithms.
Finally this work accelerates SVMs with ideas that are orthogonal to those presented in
(Graf et al., 2004). Combining the two approaches will provide the means to run SVMs on
training sets of unprecedented scale.
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