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Abstract. We present a novel algorithm for estimating the rigid-body
transformation of a sequence of coordinates, aiming at the application to
protein structures. Basically the sequence is modeled as a hidden Markov
model where each state outputs an ellipsoidal Gaussian. Since maximum
likelihood estimation requires to solve a complicated optimization prob-
lem, we introduce a variational estimation technique, which performs
singular value decomposition in each step. Our probabilistic algorithm
allows to superimpose a number of sequences which are rotated and
translated in arbitrary ways.

1 Introduction

In the most simple form, the protein structure is represented as a sequence of
3-dimensional vectors, each of which indicates the position of C, atom of an
amino acid [6]. A large amount of structure data are readily available e.g. in
the Protein Data Bank. However, it is not easy to compare protein structures
because they are translated and rotated in arbitrary ways. A set of proteins have
to be superposed correctly to measure meaningful similarities among them. Here
one has to estimate the rigid-body transformation (i.e. rotation and translation)
of each protein correctly '. Superposition of protein structures has been a central
issue in computational biology, and many methods have been proposed (e.g. [3,
11,1]). However, most works employ ad hoc or physically-motivated approaches,
and probabilistic models (e.g. HMMSs) are rather out of focus. One of the reasons
would be that the probabilistic models for estimating 3-dimensional rigid-body
transformation get so complicated that direct maximization of likelihood e.g. by
gradient descent is almost hopeless (we will show details later). However, there

! Notice that estimating rigid-body transformation is more difficult than estimating
affine transformation [9], because we have to constrain the rotation matrix to be
orthogonal. Affine transformation allows rescaling, which is obviously inappropriate
for protein structures.
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Spherical Gaussian Ellipsoidal Gaussian

Fig. 1. Comparison of the shape models based on spherical (left) and ellipsoidal (right)
Gaussians. When rotated, the covariance matrix of each Gaussian stays the same in
the spherical case, but it changes nonlinearly in the ellipsoidal case. This fact makes
it difficult to estimate the rotation and transformation by means of the ellipsoidal
Gaussians. However, the ellipsoidal Gaussians are much better to describe string-like
shapes (e.g. proteins). We will adopt a hierachical model, which combines the best of
both worlds.

are crucial advantages of employing probabilistic models. For example, one can
attach confidence levels on the estimated rotation and translation. Also one can
embed the probabilistic model as one node of a Bayesian network for higher-level
inference.

In this paper, we model protein structures by an HMM where each state
outputs a 3-dimensional vector subject to an ellipsoidal Gaussian. 2 The mean
vectors and covariance matrices of Gaussians have parameters corresponding to
rotation and translation. The rigid-body transformation is basically estimated by
maximum likelihood with respect to these parameters. The main difficulty is that
the covariance matrices are highly nonlinear functions of the rotation parameter
(Fig. 1, right). In order to alleviate the computational problem, we replace the
ellipsoidal Gaussian with the hierarchical model, that is, a spherical Gaussian
distribution whose mean is subject to an ellipsoidal Gaussian. Here we have a
new set of hidden variables, that is, the means of spherical Gaussians. Fixing
these hidden variables, the tranformation parameters are easily obtained [2], be-
cause the covariance matrix of a spherical Gaussian does not change by rotation
and translation (Fig. 1, left). Now the estimation of transformation parameters
amounts to maximize the expected log-likelihood with respect to the hidden
variables, which is tractably solved by a variational technique [5].

The organization of this paper is as follows. In section 2 we describe an HMM
shape model for representing a sequence of vectors. In section 3, we provide an
efficient algorithm for estimating rigid-body transformation. Section 4 explains
how to learn the HMM from a set of sequences. We will show several experiments
in section 5 before concluding in section 6.

2 Typically superposition is helped by side information such as amino acid sequences
(i.e. Leu-Thr-Ser-Ile-- - - ). However, this paper considers more challenging setting
that only a sequence of 3-dimensional vectors is available.



Variational Rigid-Body Alignment 3
2 Shape Models

First of all, let us formulate the shape model without rotation/translation pa-
rameters. Let us define the sequence of d-dimensional vector sequence as X =
[x(1),-++,x(L)] € R™E where L denotes the length of sequence. In the case
of protein structure, L is the number of residues. We use the continuous density
hidden Markov model(HMM) as the shape model. The HMM has the follow-
ing latent variables: S = [s(1),---,s(L)] where s(r) € {1,---, M} indicates
the state at residue r. We use a d-dimensional Gaussian as the output distri-
bution: p(x(r)|s(r) = j) ~ N(mf, C;) where () denotes a Gaussian density
function and m(])-, C; are the mean vector and the covariance matrix of state
j, respectively. The density function of an observed sequence X is given by
f(X]0) =3 g p(S|O) Hlep(x(r)|s(r), ©) where ) g denotes summing over all
possible S. For simplicity, let us describe all the parameters by @ which consists
of the parameters of Gaussian, mg, C;, as well as the state transition probabili-
ties, as;, and the initial state probabilities ;.
The density function of the rotated and translated model is described as

p(X|0,U,c) = f(UX + cli,|0) (1)

where U € R%¥*? ig a rotation matrix, ¢ € R%*! is an offset vector and 11,
is the 1 x L matrix with all elements equal to one. The rotation matrix U
has to satisfy UTU = I for orthonormality and det(U) = 1 for preserving
orientation. Assuming that @ is known, our task is to estimate U and c by
maximum likelihood:

{U,¢} = argmaxy . log p(X|©, U, ¢). (2)

Let us analyze the difficulty of solving this problem. Consider an easier problem
when S is known, i.e. maximize

L
1
logp(X|S,0,U,c) = -3 Z(Ux(r)—kc—mg(r))TC;(i) (Ux(r)+c—m2(r))+c0nst.

r=1

(3)
subject to UTU = I and det(U) = 1. Basically, this problem has a quadratic
objective function and a set of quadratic constraints, thus it is significantly more
complicated than the quadratic programming (i.e. quadratic objective function
and linear constraints) [7]. Efficient algorithms such as interior point methods
are not straightforwardly applicable for this problem, so typically one has to use
general purpose nonlinear optimizers (e.g. gradient descent, Newton methods),
which are not so efficient and prone to local minima. Here we do not insist on
finding a good approximation algorithm of solving Eq. (2), but rather decompose
the covariance of the shape model:

C; =V)+oL (4)
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Then, using the property that the convolution of two Gaussians is also a Gaus-
sian, we have the following hierarchical model:

px(r)|u(r), 0) ~ N(u(r),a®1),  pu(r)]s(r),0) ~ N(ml,), Vi)  (5)

where p(r) is a new hidden variable. Now the density function is rewritten as

L
p(X|0,U,c) = > p(S|6) H/p(u(T)IS(T),O)p(UX(T) +clu(r), ©)du(r), (6)
S r=1

where O is redefined by @ = {m9, V},ayj,--- ,an;, 7;}}L, Uo?. Fixing hidden
variables S and u(r), the optimization problem can be solved analytically using
the singular value decomposition (SVD) [2]. As we see in the next section, this
property allows us to maximize the negative free energy functional, which is the
lower bound of the log-likelihood.

3 Variational Estimation

We will discuss how to maximize the likelihood in Eq. (6) approximately by the
variational EM algorithm [5]. For any distribution ¢(S, {u(r)}L_,), the following
inequality holds:

lng(X|97 U, c) > <lng(X, S, {U(T) rl=l:1|@7 U, c)>q(S,{u(r)}7L,:1)+H (Q(Sv {,U,(T)}le)) .
(7)

where #(-) denotes the entropy function which is defined by: #(p(x)) = — [, dzp(x)log p(x).
We maximize the lowerbound by setting up a parametric model on ¢ and opti-
mize ¢ and U, c, alternately. Typically, ¢ is assumed to be factorized as

L

a(S, {n(r)}i=y) = a(S) [T alu(r)). (8)

r=1

Denote by F(U,c,¢|©,X) the right hand side of Eq. (7) where the parametric
model is plugged in. In terms of statistical physics, F is often called the negative
free energy functional. Then the variational EM algorithm [5] is represented as
follows:

Q(S) ‘= argmax, (s ‘7:(U> C, Q|9, X): (9)
q(,u(r)) = argmaxq(u(r)) ‘7:(Ua c, Q|@v X)7 vr (10)
{U, ¢} == argmaxy . F(U, ¢, ¢|0,X) (11)

The first two belong to the E-step while the last one belongs to the M-step.
Let us solve the first one in Eq. (9). Using the variational method and keep-
ing the other parameters fixed, the current optimal posteriors ¢(S) are given

by: q(S) o (Hz;l bs(r) (r)) Ts(1) (Hf:_ll as(r)s(rﬂ)) , where we define by, (r) o
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N (m;(r)|m9, Vo) exp (=0.5tr ((V9)~'V;(r))) . In the other two steps, the func-
tion ¢(S) is not fully needed, but only the following statistics are referred:
7i(r) = q(s(r) = 1) = > g 6; s a(S) where 0. . denotes Kronecker’s delta. The
statistics v;(r) can be computed efficiently by applying the forward-backward

algorithm [8] as follows. Computing the variables, a;(r) and B;(r), as

()_ ’/szz(].) if?“:]., 6()_ 1 ifT:L,
TV ) S, asr = Dag itr>1, O T\ S8+ Dagh(r+1) ifr < L,

j
we have 7;(r) oc a;(r)8;(r). We can also obtain a by-product of this procedure:
fij (7") = ES 6i,s(r)6j,s(r+1)Q(S) X ai(r)aijbj (7“ + l)ﬁj (7“ + 1). The statistics fij (t)
are utilized in the next section.

Also, the second one in Eq. (10) is solved analytically as

q(p(r)) ~ N(m(r), V(r)) (12)
where
V(r) = 0721+Zyj(r)(vg)*1 , m(r)=V(r) a*zx(r)+Z(vg)*1mj
J J (13)

Finally we will show how to solve the M-step in Eq. (11). Removing the terms
which do not depend on U and c from F, we have the following;:

L
Fo(U, |0, X) = —2}7 > llm(r) — (Ux(r) + )| (14)

Thus maximization of Fy is a least squares problem, which is known to be solved
by SVD [2]. Let us define a matrix £ = = 3" (m(r) — 1) (x(r) — 1) 7. where
o = T Ef:l x(r), up = %Ele m(r). Then decompose ¥ = VDW T by SVD,
where V and W are the matrices of left and right singular vectors and D is the
diagonal matrix of singular values. The optimal values of U and c are obtained
as

U:=VPW', c:=pu—Up,, (15)
where
p_ I if det(V)det(W) =1,
| diag(1,--+,1,—1) if det(V)det(W) = —1.

As seen in Eq. (14), each M-step finds U and ¢ which yields the least square
error between the transformations of X and m(r). So the location of m(r) is
extremely important in this procedure. The latent variable m(r) can be regarded
as the intermediates between the transformation x'(r)(= Ux(r) + c) and the
corresponding inner Gaussian N (mg(r) , Vg(r)). The crucial variable determining

m(r) is o2, From the nature that Gaussians merely generate points outside of
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the circle with the variance, m(r) is likely to be in the circle with radius o
and centre x'(r) so as to explain x'(r) produced by AN (u(r),o?I). Therefore,
the larger o2 is, the closer m(r) is to the centre of the Gaussian and the more
quickly the optimal solution is found. From these observations, we employ an
annealing approach: we start with the large o? and reduce the values step by
step. In all simulations provided later, we used the following value of o2 in the
t-th iteration: o2(t) := (49exp(—t/20) + 1)o2 where 02 is the minimum of all
the eigen-values in M covariance matrices. VY are fixed at V} = C; — o3I This
annealing is scheduled so that Eq. (4) holds in the oco-th iteration.

4 Learning Shape Models

Here we describe a method for learning the shape model parameters @ from a
number of sequences. We again use the variational EM algorithm in order to
estimate the shape model parameters, @, and the rotation and offset parame-
ters, U,, c,, of each sequence simultaneously. Given a training set of sequences,
{X,,}_,, the objective function for learning is the following log-likelihood func-
tion:

N
‘C(Q7 {Un7 c”}ﬁ:l |{Xn}rly=1) = Z logp(Xn|@, U’na Cn) (16)
n=1

where U,, ¢, are the rotation matrix and offset vector for n-th sequence X,,,
respectively. The log-likelihood function in Eq. (16) leads the following negative
free energy functional:

N
fshape({Una Cn}g:p Q|9: {Xn}rlyzl) = Z I(Un: Cn, Q|@7 Xn) (17)

n=1

by the similar variational approximation to Eq. (8), that is, ¢(Sy, {un(r)}£_,) =
q(Sn) Hle q(pn(r)). We then obtain the variational EM algorithm as follows:

q(Sy) := argmax,(g ) F(Un,€n,q|0,X,), Vn (18)
q(pn(r)) == argmax,,, () F(Un,cn, q10,Xy), Vn,vr (19)
{Un,cp} i= argmaxy; . F(Uy,c,,q0,X,), Vn (20)

O := argmaxg fshape({Un:cn}g:hﬂ@v {Xn}gzl) (21)

The E-step includes Eq. (18) and Eq. (19), whereas the M-step includes Egs. (20),
(21).

In the first problem in Eq. (18), we need not to solve ¢(S,) completely. Here
the statistics q(sp(r) = 4) and q(sn(r) =i, sp(r+1) = j) are required for solving
Eq. (21), which are commonly described as v; ,(r) and & j»(r), respectively, in
HMM literature (e.g. [8]). Again they can be computed by the forward-backward
algorithm [8]. The second problem in Eq. (19) can be solved by the similar update
equations as Eq. (12). In this case, we have to replace u(r), m(r), V(r), x(r),
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v (1) with g, (1), my (1), Vi (r), x0(r), vjn(r), respectively. The third problem
in Eq. (20) can be solved in the same way as Eq. (15). In the fourth problem in
Eq. (21), the optimal solution of o2 is described as

o T, 1Unxn(r) + e — myu (n)[|° + tr Vo (r)
o’ = dEn . . (22)

The other variables are obtained by vanishing the derivative of Eq. (21) subject
to the constraints that Ej a;j = 1 and ), m; = 1. The solutions are described
as follows:
m® = En,r Vjn (r)mp (1) VO . En,r Vi (T) Vi,
! Yonr Yim(r) ! Do Yim(r)
N L,-1 N L,
En:l Er:l gi.j,n(r) P En:l Er:l 'Yi,n(r) (24)
N L,—1 ’ i J
En:1 Er:1 %',n(r)

(23)

aij =

N
En:l L”

whete Vi, p.j = Vu(r) + (m0,(r) — m?) (my,(r) — m?) .

5 Experiments

We first tested the algorithm on on-line handwritten digits ‘2’ and ‘6’, where eight
2-dimensional vector sequences are superposed for each digit (Figure 2). In all
simulations in this paper, we set the number of states M = 7. The variational EM
algorithm found the almost optimal rotations and translations and the common
shape in the data set, as shown in Figure 2. Next we will show the superposition
of protein sequences. We used eight 3-dimensional structures from the globin
family: 4HHB:A, 4HHB:B, 5MBN:-, 1ECD:-, 2LHB:-, 2LH3:-, 2HBG:-, which
have also been used in [1, 14]. Although we did not use any additional information
such as amino acid sequences or the position of other atoms than C,, almost
perfect superposition was achieved (Figure 3).

One crucial advantage of probabilistic modeling is that it can be used as a
building block of a larger probabilistic model. For illustrating this advantage,
we actually implemented the mixture of HMMs [12] and applied it to semi-
supervised learning (i.e. learning from labeled and unlabeled data) [10]. We
used 46 protein structures of three classes (16 Globins, 17 Ig-likes, and 13 TIM-
barrels). For each class, six structures are randomly chosen as training data,
where two of them are given class labels and the other four stays unlabeled.
The remaining samples are used as test data. The confusion matrices averaged
over 10 trials are shown in Table 1. When unlabeled samples are involved, the
classification accuracy improved significantly.

6 Conclusion

In this paper, we presented a novel algorithm which estimates the rigid-body
transformations from arbitrarily rotated and translated vector sequences. As
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Fig. 2. Superpositions of on-line handwritten digits. Using eight on-line handwritten
‘2’s (top left), we estimate the rotation and the offset parameters as well as common
shape parameters by the variational EM algorithm described in section 3, and obtained
the resultant superposition (top right). The result of superposition and common shape
of eight ‘6’s are also shown in the bottom row. In both cases, almost optimal superpo-
sitions are achieved.

No unlabeled sequences | 4 unlabeled sequences
Globin Ig-like TIM-barrel|Globin Ig-like TIM-barrel
Globin |80.0% 1.0% 19.0% [95.0% 1.0% 4.0%
Ig-like 0.0% 64.5%  35.5% 0.0% 82.7% 17.3%

TIM-barrel| 0.0% 1.3% 98.8% 0.0% 0.0% 100.0%

Table 1. Confusion matrices from the semi-supervising experiment. The mixture of
HMMs is trained by 2 labeled and 4 unlabeled sequences. Significant improvement is
observed when unlabeled samples are incorporated.

partly suggested in the previous section, a large number of extensions can be de-
veloped from this algorithm due to its probabilistic nature, for example, cluster-
ing, detecting outliers, introducing prior knowledge, interpolating missing values,
and so on.

One of the most attractive extensions is to combine discriminative methods
such as support vector machines. The discriminative methods are often reported
to be superior in classification to generative models [4]. Motivated by the fact,
several methods which design kernel functions for use in discriminative methods
have been proposed (e.g. Fisher kernel [4], marginalized kernel [13] etc. ). We
might achieve the further improvement by adopting such methods.
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Fig. 3. Superposition of globins. We apply the variational EM algorithm described
in section 3 to seven globin structures (left) and achieve almost perfect superposi-
tion (right) in spite of using only coordinates of C atoms.
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