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Abstract

We address the problem of learning a positive definite matrix from exam-
ples. The central issue is to design parameter updates that preserve pos-
itive definiteness. We introduce an update based on matrix exponentials
which can be used as an on-line algorithm or for the purpose of finding
a positive definite matrix that satisfies linear constraints. We derive this
update using the von Neumann divergence and then use this divergence
as a measure of progress for proving relative loss bounds. In experi-
ments, we apply our algorithms to learn a kernel matrix from distance
measurements.

1 Introduction

Most learning algorithms have been developed to learn a vector of parameters from data.
However, an increasing number of papers are now dealing with more structured parameters.
More specifically, when learning a similarity or a distance function among objects, the
parameters are defined as a positive definite matrix that serves as a kernel (e.g. [12, 9,
11]). Learning is typically formulated as a parameter updating procedure to optimize a loss
function. The gradient descent update [5] is one of the most commonly used algorithms,
but it is not appropriate when the parameters form a positive definite matrix, because the
updated parameter is not necessarily positive definite. Xing et al. [12] solved this problem
by always correcting the updated matrix to be positive. However no bound has been proven
for this update-and-correction approach. In this paper, we introduce the matrix exponential
update which works as follows: First, the matrix logarithm of the current parameter matrix
is computed. Then a step is taken in the direction of the steepest descent. Finally, the
parameter matrix is updated to the exponential of the modified log-matrix. Our update
preserves symmetry and positive definiteness because the matrix exponential maps any
symmetric matrix to a positive definite matrix.

Bregman divergences play a central role in the motivation and the analysis of on-line learn-
ing algorithms [4]. A learning problem is essentially defined by a loss function, and a di-
vergence that measures the discrepancy between parameters. More precisely, the updates
are motivated by minimizing the sum of the loss function and the Bregman divergence,



where the loss function is multiplied by a positive learning rate. Different divergences
lead to radically different updates [5]. For example, the gradient descent is derived from
the squared Euclidean distance, and the exponentiated gradient from the Kullback-Leibler
divergence. We use the von Neumann divergence (from quantum physics) for measuring
the discrepancy between two positive definite matrices [6]. We derive a new matrix expo-
nential update from this divergence (which is a Bregman divergence for positive definite
matrices). Finally we prove relative loss bounds using the von Neumann divergence as a
measure of progress.

Also the following related problem has received a lot of attention recently [12, 9, 11]: Find
a positive definite matrix that satisfies a number of linear inequality constraints. We greed-
ily choose the most violated constraint and perform an approximated Bregman projection.
In the degenerate case when the parameter matrix is diagonal, we recover AdaBoost [7].
We prove the convergence of our algorithm which is a generalization of the standard anal-
yses used for Boosting.

Notation: For a symmetric matrix � , ������� and �	��
�� denote the matrix exponential and
logarithm operations, respectively. For two symmetric matrices � and  , ���� iff ����
is positive semi-definite. Similarly, ���� iff ���� is strictly positive definite.

2 Von Neumann Divergence

If � is a real convex differentiable function on the parameter domain (symmetric �����
positive definite matrices), then the Bregman divergence between two parameters �� and�

is defined as ���! ��#"$�&%(' �  ��&% �)�  �&% �+*-,/.  �� � �&%10 �  �&%3234
When choosing �  �&%(' *-,  � �	��
 � � �&% , then

0 �  �&%�' �	��
 � and the correspond-
ing Bregman divergence becomes the von Neumann divergence [6]:���! ��#"5�&%�' *$,  �� �6�7
8�� �9�� �	��
 � �:��<;=�&%>4

(1)

If
�?'&@BA�C AEDFAGDIHA

is our notation for the eigenvalue decomposition, then we can rewrite
the divergence as� �  ��#"5�&%('KJ A �C A �6L �C A ;=C A � �C A ;MJ AON P �C A �6L C P  �D HA DQP %SR74

So this divergence quantifies the difference in the eigenvalues as well as the eigenvectors.
In this paper, we are primarily interested in the normalized case ( *-,  �&%T'VU

), because
kernel learning algorithms are insensitive to the scale of the kernel matrix. In this case the
divergence simplifies to

� �  ��#"$�&%(' *-,  �� �	��
8�� �9�� �6�7
 �&% .
3 On-line Learning

In this section, we present a natural extension of the exponentiated gradient (EG) algo-
rithm [5] to an update for symmetric positive definite matrices. At the W -th trial, the al-
gorithm receives a symmetric instance matrix XZY\[�]_^a`b^ . It then produces a predictioncd Y ' *-,  � YeX�Y % based on the algorithm’s current symmetric positive definite parameter
matrix

� Y . Finally it incurs a loss
 cd Y � d Y % R and updates its parameter matrix

� Y . In the
update we aim to solve the following problem 1:� YOfhg 'Bi ,-
�j�k	Lml � �  ��"$� Y %I;�n  *-,  � X�Y % � d Y %SR7" (2)

1For the sake of simplicity, we use the simple quadratic loss: oqp-rEsutwvxrzye{>r}|~p3s�tI����p3te� . In
general, the gradient �~o p rEs p t is exponentiated in the update (4). More general loss functions (based
on Bregman divergences) are amenable to our techniques (see e.g. [4]).



where the convex function � defines the Bregman divergence. Setting the derivative with
respect to

�
to zero, we have0 �  � YOfqg % � 0 �  � Y %F;�n 0 . *$,  � YOfqg X�Y % � d Y % R 2 ' � 4

(3)

The update rule is derived by solving (3) with respect to
� YOfqg , but it is not solvable in

closed form. A common way to avoid this problem is to approximate *-,  � YOfhg X Y % by*-,  � YeX�Y % [4]. Then, we have the following update:� YOfqg '  0 � %�� g  0 �  � Y % ��� n  cd Y � d Y % X Y % 4
In our case, �  �&% ' *-,  � �6�7
 � � �&% and thus

0 �  �&%(' �	��
 � and
 0 � % � g  �&%('�>��� � . We also augment (2) with the constraint *-,  �&% '9U

, leading to the following
matrix exponential update:

� YOfhg '
U� Y �>���  �	��
 � Y ��� n  cd Y � d Y % X Y % " (4)

where the normalization factor is
� Y ' *-, . �����  �6�7
 � Y ��� n  cd Y � d Y % X Y %e2 4 Note that in the

above update, the exponent �6�7
 � Y ��� n  cd Yq� d Y % X�Y is an arbitrary symmetric matrix and
the matrix exponential converts this matrix back into a symmetric positive definite matrix.

Relative Loss Bound Let 	 '�
  X_g " d g %>"�4/4�4 "  X� " d � %�� denote a sequence of exam-
ples, where the instance matrices X Y [�� ^a` ^ are symmetric and the labels d Y [�� . For
any symmetric positive semi-definite matrix � with *-,  � %�'<U

, define its total loss as���������  	 %�' @ �Y��hg  *-,  �~X Y % � d Y % R 4 The total loss of the on-line algorithm is
�����!  	 %('@ �Y��hg  *-,  � Y X Y % � d Y % R 4 We prove a bound on the relative loss

�����"  	 % � ���������  	 %
that holds for any � . The proof generalizes a similar bound for the exponentiated gradient
algorithm (Lemmas 5.8 and 5.9 of [5]). The relative loss bound is derived in two steps:
Lemma 3.1 bounds the relative loss for an individual trial and Lemma 3.2 for a whole
sequence (Proofs in Appendix).

Lemma 3.1 Let X Y be any symmetric matrix whose smallest and largest eigenvalues sat-
isfy

C$# A&%�')(+*
and

C,#.-�/ � (+* ; (
, respectively. Let � be any symmetric positive semi-

definite matrix. Then for any constants 0 and 1 such that
� �)0 �2�31+4  � ; ( R 1 % and any

learning rate
nZ' �31+4  � ; ( R 1 % , we have

0  d Y � *$,  � Y X Y %1% R ��1  d Y � *$,  �~X Y %1% R � �T � "$� Y % � �T � "$� YOfhg % (5)

Lemma 3.2 Let
� g and � be arbitrary symmetric positive definite start and comparison

matrices. Then for any 5 such that
n�' ��564  ( R  � ; 5 %1% ,

� �7�"  	 % �  U ; 5� %8������� �
 	 %I;  U� ;

U
5 %
( R �_ � "5� g % 4 (6)

Assuming
�9�������  	 % �;: #�-</ and

�T � "5� g % � � #.-�/ , the bound (6) is tightest when 5 '(>= �a� #�-</ 4?: #.-�/ . Then we have
�@���!  	 % � ���������  	 % �BADCR �T � "$� g % ; (FE ��: #�-</ � #.-�/ .

4 Bregman Projection

In this section, we address the following Bregman projection problem2

� � ' i ,$
7j�k6Lml ���! ��"5� g % " *$,  �&%�'�U�" *$,  �2G P % � � "IH ' U7"�4/4�4 "KJ "
(7)

2Note that if L is large then the on-line update (2) becomes a Bregman projection subject to a
single equality constraint ye{>rEsM| p tFv�� p .



Exact
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Approximate
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Figure 1: In (exact) Bregman projections, the intersec-
tion of convex sets (i.e., two lines here) is found by
iterating projections to each set. We project only ap-
proximately, so the projected point does not satisfy the
current constraint. Nevertheless, global convergence
to the optimal solution is guaranteed via our proofs.

where
� g

' � " *-,  � g %~' U
is the initial parameter matrix, and

G g "/4�4/4 "DG % are arbitrary
symmetric matrices. Prior knowledge about

�
is encoded in the constraints, and the matrix

closest to
� g is chosen among the matrices satisfying all constraints. Tsuda and Noble [11]

employed this approach for learning a kernel matrix among graph nodes, and it can be
potentially applied to learn a kernel matrix in other settings (e.g. [12, 9]).

The problem (7) is perceived as a projection of
� g to the intersection of convex regions de-

fined by the constraints. It is well known that the Bregman projection into the intersection
of convex regions can be solved by sequential projections to each region [1]. An interest-
ing point of our algorithm is that the parameter is only approximately projected in each
iteration (Figure 1), but nevertheless one can prove the convergence as follows: Interpret
Boosting as a Bregman projection [3] and use a generalization of the convergence proof for
Boosting [7].

Before presenting the algorithm, let us derive the dual problem of (7) by means of Lagrange
multipliers � , � � 'Bi ,$
7j�k6L�� *-, . �����  �6�7
 � g � %

JP �qg
� P G P %323" � P�� � 4

(8)

See [11] for detailed derivation of the dual problem. When (7) is feasible, the opti-
mal solution is described as

� �T' g��� �
	�� �>���  �	��
 � g � @ %P �hg � �P G P %>"
where

�  � ��%�'
*-, . �>���  �6�7
 � g � @

%P �hg � �P G P %e2
.

Exact Bregman Projections First, let us present the exact Bregman projection algorithm
to solve (7). We start from the initial parameter

� g . At the W -th step, the most unsatisfied
constraint is chosen,

H Y ' i ,$
7j i � P �hg N���SN % *-,  � Y G P % 4 Let us use
G Y as the short notation

for
G P��

. Then, the following Bregman projection with respect to the chosen constraint is
solved. � YOfhg 'Bi ,$
7j�k6Lml��  ��"5� Y %>" *$,  �&%�'&U�" *$,  �2G Y % � � 4

(9)

By means of a Lagrange multiplier � , the dual problem is described as�IY '8i ,-
�j�k	L
�w*$,�. �>���  �	��
 � Yh��� G Y %e2 " � � � 4
(10)

Using the solution of the dual problem,
� Y is updated as

� YOfhg '
U� Y  � Y % �>���  �	��
 � Yh���IY G Y % (11)

where the normalization factor is
� Y  �IY %�' *-, . �����  �6�7
 � Y ���hY G Y %e2 .

Approximate Bregman Projections The solution of (10) cannot be obtained in closed
form. However, one can use the following approximate solution:�hY ' U

C #.-�/Y � C # A&%Y �6�7

� U ; ( Y 4 C$#.-�/YU�; ( Y 4 C # A&%Y � " (12)



when the eigen values of
G Y lie in the interval . C,# A %Y "5C$#.-�/Y 2

and
(
Y ' *$,  � Y G Y % . Since the

most unsatisfied constraint is chosen,
(
Y � �

and thus � Y � �
. Although the projection is

done only approximately, the convergence of the dual objective (8) can be shown using the
following upper bound.

Theorem 4.1 The dual objective (8) is bounded as

*$,/. �>���  �	��
 � g �
%
JP �hg

� P G P %32O% � ��
Y��hg��

 ( Y % (13)

where �
 ( Y % '  U �

(
YC #.-�/Y
% �����	��
� ���
���� � �����  U �

(
YC # A %Y
% � �������� ���
���� � ����� 4

The dual objective is monotonically decreasing, because �
 ( Y % � U

. Also, since
(
Y corre-

sponds to the maximum value among all constraint violations

 ( P � %P �hg , and �

 ( Y %�'�U only
if
(
Y ' �

. Thus the dual objective continues to decrease until all constraints are satisfied.

Relation to Boosting When all matrices are diagonal, our algorithm degenerates to Ad-
aBoost [7]: Let


�� A " d A � ^A �hg be the training samples, where
� A [;� # and d A [ 
 � U7"/U�� .

Let � g  �� % "�4/4�4h" � %  �� % [).	� U7"/U>2 be the weak hypotheses. For the
H
-th hypothesis � P  �� % , let

us define
G P '�� k i 
  d g�� P  �� g %>"�4�4/4 " d ^ � P  �� ^ %-% . Since � d � P  �� % � � U , C #.-�/��D#

A&%
Y '���U

for
any W . Setting

� g '�� 4a� , the dual objective (13) is rewritten asU
�
^J A �hg �>���

 � d A
%
JP �hg

� P � P  �� A %1%>"
which is equivalent to the exponential loss function used in AdaBoost. Since

G P
and

� g
are diagonal, the matrix

� Y stays diagonal after the update. If � Y A ' . � Y 2 A	A , the updating
formula (11) becomes the AdaBoost update: ��YOfhg N A ' � Y A �>���  � �IY d A � Y   � A %1% 4 � Y  �hY % 4 The
approximate solution of �qY (12) is described as �qY ' gR �	��
 g1f A

�
g � A � , where

(
Y is the weighted

training error of the W -th hypothesis, i.e.
(
Y 'K@ ^A �hg � Y A d A � Y  �� A % .

5 Experiments on Learning Kernels

In this section, our algorithms are applied to learning a kernel matrix from a set of distance
measurements. When ! is a �I�(� kernel matrix among � objects, then the ! A P characterizes
the similarity between objects " and

H
. In the feature space, ! A P corresponds to the inner

product between object " and
H
, and thus the Euclidean distance can be computed from the

entries of the kernel matrix [8]. In some cases, the kernel matrix is not given explicitly,
but only a set of distance measurements is available. The data are represented either as (i)
quantitative distance values (e.g., the distance between " and

H
is 0.75), or (ii) qualitative

evaluations (e.g., the distance between " and
H

is small) [12, 11]. Our task is to obtain a
positive definite kernel matrix which fits well to the given distance data.

On-line kernel learning In the first experiment, we consider the on-line learning scenario
in which only one distance example is shown to the learner at each time step. The distance
example at time W is described as


 0 Y " 1 Y " d Y � , which indicates that the squared Euclidean
distance between objects 0 Y and 1 Y is d Y . Let us define a time-developing sequence of kernel
matrices as


 � Y � �Y��hg , and the corresponding points in the feature space as

�� Y A � ^A �hg (i.e.. � Y 2 -�# '$� HY - � Y # ). Then, the total loss incurred by this sequence is�J

Y��hg
 &% � Y - � � � Y # � % R � d Y % R ' �J

Y��qg
 *-,  � YeX Y % � d Y % R "
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Figure 2: Numerical results of on-line learning. (Left) total loss against the number of
iterations. The broken flat line shows the loss bound. (Right) classification error of the
nearest neighbor classifier using the learned kernel. The broken line shows the error by the
target kernel.

where X Y is a symmetric matrix whose
 0 Y " 0 Y % and

 1 Y " 1 Y % elements are 0.5,
 0 Y " 1 Y % and 1 Y " 0 Y % elements are -0.5, and all the other elements are zero. We consider a controlled

experiment in which the distance examples are created from a known target kernel matrix.
We used a �F�_���F� kernel matrix among gyrB proteins of bacteria ( � ' �F� ). This data
contains three bacteria species (see [10] for details). Each distance example is created
by randomly choosing one element of the target kernel. The initial parameter was set as� g '�� 4 � . When the comparison matrix � is set to the target matrix,

������� �  	 %w' �
and: #.-�/ ' �

, because all the distance examples are derived from the target matrix. Therefore
we choose learning rate

n=' � , which minimizes the relative loss bound of Lemma 3.2.
The total loss of the kernel matrix sequence obtained by the matrix exponential update is
shown in Figure 2 (left). In the plot, we have also shown the relative loss bound. The
bound seems to give a reasonably tight performance guarantee—it is about twice the actual
total loss. To evaluate the learned kernel matrix, the prediction accuracy of bacteria species
by the nearest neighbor classifier is calculated (Figure 2, right), where the 52 proteins are
randomly divided into 50% training and 50% testing data. The value shown in the plot
is the test error averaged over 10 different divisions. It took a large number of iterations
( �2� � U ��� ) for the error rate to converge to the level of the target kernel. In practice one
can often increase the learning rate for faster convergence, but here we chose the small rate
suggested by our analysis to check the tightness of the bound.

Kernel learning by Bregman projection Next, let us consider a batch learning sce-
nario where we have a set of qualitative distance evaluations (i.e. inequality constraints).
Given

J
pairs of similar objects


 0 P " 1 P � %P �hg , the inequality constraints are constructed as% � -�� � � #�� % � � " H&' U7"/4�4/4 " J
, where � is a predetermined constant. If X P is de-

fined as in the previous section and
G P ' X P � � �

, the inequalities are then rewritten as*-,  �2G P % � � " H+' U�"�4�4/4 " J
. The largest and smallest eigenvalues of any

G P
are

U � �
and � � , respectively. As in the previous section, distance examples are generated from
the target kernel matrix between gyrB proteins. Setting � ' � 4 � 4 � , we collected all object
pairs whose distance in the feature space is less than � to yield 980 inequalities (

J '	��
 �
).

Figure 3 (left) shows the convergence of the dual objective function as proven in Theo-
rem 4.1. The convergence was much faster than the previous experiment, because, in the
batch setting, one can choose the most unsatisfied constraint, and optimize the step size as
well. Figure 3 (right) shows the classification error of the nearest neighbor classifier. As
opposed to the previous experiment, the error rate is higher than that of the target kernel
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Figure 3: Numerical results of Bregman projection. (Left) convergence of the dual objec-
tive function. (Right) classification error of the nearest neighbor classifier using the learned
kernel.

matrix, because substantial amount of information is lost by the conversion to inequality
constraints.

6 Conclusion

We motivated and analyzed a new update for symmetric positive matrices using the von
Neumann divergence. We showed that the standard bounds for on-line learning and Boost-
ing generalize to the case when the parameters are a symmetric positive definite matrix (of
trace one) instead of a probability vector. As in quantum physics, the eigenvalues act as
probabilities.
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A Proof of Lemma 3.1

Let � Y ' � n  d Y ��*-,  X � Y %-% , then the right hand side of (5) is rewritten as
�_ � "5� Y % ��T � "$� YOfhg %w' � Y *-,  �!X Y % �)�6�7
(*-,  �>���  �	��
 � Y ; � Y X Y %1% . Therefore, (5) is equivalent to� � � , where

� ' �6�7
 *$,  �>���  �6�7
 � Y ; �bY3X�Y %1% ���bY *-,  �~X�Y %a; 0  d Y7��*-,  � YeX�Y %-% R �1  d Ya�*-,  �!X Y %-% R 4 Let us bound the first term. Due to Golden-Thompson inequality [2], we have

*$,�. �>���  �6�7
 � Y ; � Y X Y %e2 �=*-, . � Y �>���  � Y X Y %e2 4 (14)

The right hand side is rewritten as �>���  � Y X�Y % ' �>���  
( *
�mY % �>���  �bY  X�Y �

( * � %1% 4
Then we

use the following lemma.

Lemma A.1 If an
J � J symmetric matrix � satisfies

� ����� �
, �>���  �� g � ; � R  � ��� %-% ��>���  �� g % � ; �>���  �� R %  � �)� % for finite

� g " � R [ � .

(proof) � is eigen decomposed as � '����	� H
, where

�
is a diagonal matrix of eigenvalues� � C�
 � U , and

�
is the matrix of eigenvectors. The � -th eigenvalue of the left hand side

is bounded as  
 ' ��� �  �� g C 
 ; � R  U � C 
 %1% �u�>���  �� g %1C 
 ; �����  �� R %  U � C 
 % due to Jensen’s
inequality. Let � be the diagonal matrix of  
 , then � �=�����  �� g %��+; �>���  �� R %  � � �w%>4 By
multiplying both sides by

�
from left and by

� H
from right, we prove the lemma.

Using the lemma with � '  X Y7�
( * � % 4 ( , � g ' (

�bY " � R ' �
, we have �>���  �mY  X Y7�

( * � %1% �� ��� � � A����A
 U �~�>���  

(
� Y %-% 4 Here

� �u�&� �
, because

(6* � �=X Y �  (+* ; ( % � by assumption.



Since
� Y is strictly positive definite, *-,  � Y  % ��*-,  � Y G\% if  � G

. So, the right hand
side of (14) can be written as

*$,�. � Y �>���  �bY3X�Y %32 �u�>���  
( *
�bY %��3U � *$,  � Y X Y % �

(+*(  U �)�>���  
(
�mY %1%��~"

where we used the assumption *-,  � Y %(' U . We now plug this upper bound of the first term
of
�

back into
�

and obtain
� ��� , where

� ' ( *
�mY ; �6�7
m. U ���	� � l � � � � � A��A

 U �)�>���  
(
�mY %1%e2 �+*-,  �~X�Y % �mY; 0  d Yq� *$,  � YeX�Y %1% R ��1  d Yh� *$,  �~X�Y %-% R 4 (15)

Let us define 
 ' *$,  �~X Y % and maximize the upper bound (15) with respect to 
 . Solving����� ' �
, we have 
 ' d Y � �mY 4  �F1 % ' d Y ;�n  *-,  X�Y � Y % � d Y % 4�1 4 Substituting this into (15),

we have the upper bound � � � where

� ' � n ( *  d Yh� *$,  X�Y � Y %1%h; �6�7
 . U ���	� � � � l � � � A �A
 U �)�>���  � n (  d � *$,  X�Y � Y %1%-%1%e2

� � n d Y  d Yh�+*-,  X�Y � Y %-%I;  0 ;�� C#  d � *$,  X�Y � Y %1% R 4
Using the upper bound �	��
  U ���  U ���� %1% ����� ; � R 4 
 in the second term, we have

� �  d Y � *$,  X Y � Y %1% R�F1
 - � ; ( R 1 %Sn R ��� 1 n!; ��0>1 %>4

It remains to show � '  � ; ( R 1 %en R ��� 1 n ; �F0>1�� �
. We easily see that � is minimized forn�' �F164  � ; ( R 1 % and that for this value of

n
we have � � � if and only if 0 ���F164  � ; ( R 1 % .
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