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Our contributions

• Developed the discrete calculus and geometry on discrete objects

• Constructed the discrete regularization framework for learning on dis-

crete spaces

• Proposed a family of transductive algorithms derived from the discrete

framework
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Outline

• Introduction

• Discrete analysis and regularization

• Related work

• Discussion and future work
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Introduction

• Definition and motivations of transductive inference

• A principled approach to transductive inference
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Problem setting

Consider a finite input space X = {x1, . . . , xl, xl+1, . . . , xl+k} and

output space Y = {−1, 1}.

• Observes the labels of the first l points: (x1, y1), . . . , (xl, yl).

• Predicts the labels of the given points: xl+1, . . . , xl+k.

We may use any supervised learning classifiers, for instance, SVMs

(Boser et al., 1992; Cortes and Vapnik, 1995), to estimate the labels

of the given points. However, · · ·
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Motivation in theory: Vapnik’s philosophy
and transduction (Vapnik, 1998)

• Do not solve a more general problem as an intermediate step. It is

quite possible that you have enough information to solve a particular

problem well, but have not enough information to solve a general

problem.

• Transductive inference: Do not estimate a function defined on the

whole space (inductive). Directly estimate the function values on the

given points of interest (transductive)!
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Vapnik’s picture: Transduction vs. Induction
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Further motivations: Learning with very few
training examples

• Engineering Improving classification accuracy by using unlabeled

data. Labeling needs expensive human labor, whereas unlabeled data

is far easier to obtain.

• Cognitive science Understanding human inference. Humans can

learn from very few labeled examples.
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A basic idea in supervised learning:
Regularization

A common way to achieve smoothness (cf. Tikhonov and Arsenin, 1977):

min
f
{Remp[f ] + λΩ[f ]}

— Remp[f ] is the empirical risk;

— Ω[f ] is the regularization (stabilization) term;

— λ is the positive regularization parameter specifying the trade-off.
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A basic idea in supervised learning:
Regularization (cont. )

• Typically, the regularization term takes the form:

Ω[f ] = ‖Df‖2
,

where D is a differential operator, such as D = ∇ (gradient).

• Kernel methods:

Ω[f ] = ‖f‖2
H,

where H denotes a Reproducing Kernel Hilbert Space (RKHS).

They are equivalent (cf. Schölkopf and Smola, 2002).
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A principled approach to transductive
inference

• Develop the discrete analysis and geometry on finite discrete spaces

consisting of discrete objects to be classified

• Discretize the classical regularization framework used in the inductive

inference. Then the transductive inference approaches are derived

from the discrete regularization.

Transduction vs. induction: discrete vs. continuous regularizer
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• Discrete analysis and regularization

• Related works

• Discussion and future works
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Discrete analysis and regularization

• A basic differential calculus on graphs

• Discrete regularization and operators

? 2-smoothness (p = 2, discrete heat flow, linear)

? 1-smoothness (p = 1, discrete curvature flow, non-linear)

? ∞-smoothness (p = ∞, discrete large margin)
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A prior assumption: pairwise relationships
among points

• If there is no relation among the discrete points, then we cannot

make any prediction which is statistically better than a random guess.

• Assume the pairwise relationships among points:

w : X × X → R+.

The set of points may be thought of as a weighted graph, where the

weights of edges encode the pairwise relationships.
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Some basic notions in graph theory

• A graph Γ = (V,E) consists of a set V of vertices and a set of

pairs of vertices E ⊆ V × V called edges.

• A graph is undirected if for each edge (u, v) ∈ E we also have

(v, u) ∈ E.

• A graph is weighted if it is associated with a function w : E → R+

satisfying w(u, v) = w(v, u).
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Some basic notions in graph theory (cont.)
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Some basic notions in graph theory (cont.)

• The degree function g : V → R+ is defined to be

g(v) :=
∑
u∼v

w(u, v),

where u ∼ v denote the set of vertices u connected to v via the

edges (u, v). The degree can be regarded as a measure.

Max Planck Institute for Biological Cybernetics 17



Some basic notions in graph theory (cont.)
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The space of functions defined on graphs

• Let H(V ) denote the Hilbert space of real-valued functions endowed

with the usual inner product

〈ϕ, φ〉 :=
∑
v

ϕ(v)φ(v),

where ϕ and φ denote any two functions in H(V ). Similarly define

H(E). Note that function ψ ∈ H(E) need not be symmetric, i.e.,

we do not require ψ(u, v) = ψ(v, u).
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Gradient (or boundary) operator

• We define the graph gradient operator d : H(V ) → H(E) to be (

Zhou and Schölkopf, 2004)

(dϕ)(u, v) :=

√
w(u, v)

g(u)
ϕ(u)−

√
w(u, v)

g(v)
ϕ(v),

for all (u, v) in E.

Remark In the lattice case, the gradient degrades into

(dϕ)(u, v) = ϕ(u)− ϕ(v),

which is the standard difference definition in numerical analysis.
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Gradient (or boundary) operator
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Divergence (or co-boundary) operator

• We define the adjoint d∗ : H(E) → H(V ) of d by (Zhou and

Schölkopf, 2004)

〈dϕ, ψ〉 = 〈ϕ, d∗ψ〉, for all ϕ ∈ H(V ), ψ ∈ H(E).

We call d∗ the graph divergence operator.

Note that the inner products are respectively in the space H(E) and

H(V ).
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Divergence (or co-boundary) operator (cont.)

• We can show that d∗ is given by

(d
∗
ψ)(v) =

∑
u∼v

√
w(u, v)

g(v)

(
ψ(v, u)− ψ(u, v)

)
.

Remark The divergence of a vector field F in Euclidean space is defined by

div(F ) =
∂Fx

∂x
+
∂Fy

∂y
+
∂Fz

∂z
.

The physical significance is the net flux flowing out of a point.
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Edge derivative

• The edge derivative

∂

∂e

∣∣∣∣
v

: H(V ) → R

along edge e = (v, u) at vertex v is defined by

∂ϕ

∂e

∣∣∣∣
v

:= (dϕ)(v, u).
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Local smoothness measure

• Define the local variation of ϕ at v to be

∥∥∇vϕ
∥∥ :=

[ ∑
e`v

(
∂ϕ

∂e

∣∣∣∣
v

)2]1/2

,

where e ` v denotes the set of edges incident on v.
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Global smoothness measure

• Let S denote a functional on H(V ), for any p ∈ [1,∞), which is

defined to be

Sp(ϕ) :=
1

p

∑
v

∥∥∇vϕ
∥∥p,

and, especially,

S∞(ϕ) := max
v
‖∇vϕ

∥∥.
The functional Sp(ϕ) can be thought of as the measure of the

smoothness of ϕ.
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Discrete analysis and regularization

• A basic differential calculus on graphs

• Discrete regularization and operators

? 2-smoothness (p = 2, heat flow, linear);

? 1-smoothness (p = 1, curvature flow, non-linear);

? ∞-smoothness (p = ∞, large margin)

• Directed graphs
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Discrete regularization on graphs

• Given a function y in H(V ), the goal is to search for another

function f in H(V ), which is not only smooth enough on the graph

but also close enough to the given function y. This idea is formalized

via the following optimization problem:

argmin
f∈H(V )

{Sp(f) +
µ

2
‖f − y‖2}.

• For classification problems, define y(v) = 1 or −1 if v is labeled

as positive or negative and 0 otherwise. Each vertex v is finally

classified as sgn f(v).
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Discrete analysis and regularization

• A basic differential calculus on graphs

• Discrete regularization and operators

? 2-smoothness (p = 2, heat flow, linear);

? 1-smoothness (p = 1, curvature flow, non-linear);

? ∞-smoothness (p = ∞, large margin)

• Directed graphs
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Laplacian operator

• By analogy with the Laplace-Beltrami operator on forms on Rieman-

nian manifolds, we define the graph Laplacian ∆ : H(V ) → H(V )

by (Zhou and Schölkopf, 2004)

∆ :=
1

2
d
∗
d.

Remark The Laplace in Euclidean space is defined by

∆f =
∂2fx

∂x2
+
∂2fy

∂y2
+
∂2fz

∂z2
.
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Laplacian operator (cont.)

• Laplacian is a self-adjoint and linear operator

〈∆ϕ, φ〉 = 〈
1

2
d
∗
dϕ, φ〉 =

1

2
〈dϕ, dφ〉 =

1

2
〈ϕ, d∗dφ〉 = 〈ϕ,∆φ〉.

• Laplacian is positive semi-definite

〈∆ϕ, ϕ〉 = 〈
1

2
d
∗
dϕ, ϕ〉 =

1

2
〈dϕ, dϕ〉 = S2(ϕ) ≥ 0.

• Laplacian and smoothness

∆ϕ =
∂S2(ϕ)

∂ϕ
.
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Laplacian operator (cont.)

• An equivalent definition of the graph Laplacian:

(∆ϕ)(v) :=
1

2

∑
e`v

1
√
g

(
∂

∂e

√
g
∂ϕ

∂e

)∣∣∣∣
v

.

This is basically the discrete analogue of the Laplace-Beltrami oper-

ator based on the gradient.
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Laplacian operator (cont.)

Computation of the graph Laplacian

• Substituting the definitions of gradient and divergence operators into

that of Laplacian, we have

(∆ϕ)(v) = ϕ(v)−
∑
u∼v

w(u, v)√
g(u)g(v)

ϕ(u).

Remark In spectral graph theory (Chung, 1997), the graph Laplacian is defined

as the matrix D−1/2(D −W )D−1/2.
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Solving the optimization problem (p = 2)

Theorem. [Zhou and Schölkopf, 2004; Zhou et al., 2003] The so-

lution f of the optimization problem

argmin
f∈H(V )

{
1

2

∑
v

∥∥∇vf
∥∥2

+
µ

2
‖f − y‖2

}
.

satisfies

∆f + µ(f − y) = 0.

Corollary. f = µ(µI + ∆)−1y.
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An equivalent iterative algorithm

Isotropic information diffusion (or heat flow) (Zhou et al., 2003)

Define

p(u, v) =
w(u, v)√
g(u)g(v)

.

Then

f
(t+1)

(v) =
∑
u∼v

αp(u, v)f
t
(u) + (1− α)y(v),

where α is a parameter in (0, 1).

Remark See also (Eells and Sampson, 1964) for the heat diffusion on

Riemannian manifolds.
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A toy classification problem
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(b) SVM  (RBF Kernel)
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(d) Ideal Classification
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A toy classification problem (cont.)
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(d)  t = 400

[Note: A fully connected graph: w(u, v) = exp(−λ‖u− v‖).]
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A toy classification problem (cont.)

[Note: The function is becoming flatter and flatter.]
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Handwritten digits recognition
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SVM (RBF kernel)
our method

Digit recognition with USPS handwritten 16x16 digits dataset for a total of 9298. The

left panel shows test errors for different algorithms with the number of labeled points

increasing from 10 to 100.
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Example-based ranking

• Given an input space X = {x0, x1, . . . , xn} ∈ Rm, the first point

is the query. The goal is to rank the remaining points with respect

to their relevances or similarities to the query. [See also (e.g., Crammer

and Singer, 2001; Freund et al., 2004) for other ranking work in the

machine learning community. ]

• Define y(v) = 1 if vertex v is a query and 0 otherwise. Then rank

each vertex v according to the corresponding function value f(v)

(largest ranked first).
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A toy ranking problem

(a) Connected graph

[Note: The shortest path based ranking does not work!]
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Image ranking

Ranking digits in USPS. The top-left digit in each panel is the query. The left panel

shows the top 99 by our method; and the right panel shows the top 99 by the

Euclidean distance based ranking. Note that in addition to 3s there are many more 2s

with knots in the right panel.
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MoonRanker: A recommendation system
http://www.moonranker.com/
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Protein ranking

(With J. Weston, A. Elisseeff, C. Leslie and W.S. Noble) Protein
ranking: from local to global structure in the protein similarity
network. PNAS 101(17) (2004).
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Discrete analysis and regularization

• A basic differential calculus on graphs

• Discrete regularization and operators

? 2-smoothness (p = 2, heat flow, linear);

? 1-smoothness (p = 1, curvature flow, non-linear);

? ∞-smoothness (p = ∞, large margin)

• Directed graphs
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Curvature operator

• By analogy with the curvature of a curve which is measured by

the change in the unit normal, we define the graph curvature κ :

H(V ) → H(V ) by (Zhou and Schölkopf, 2004)

κϕ := d
∗
(

dϕ

‖∇ϕ‖

)
.
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Curvature operator (cont.)

• Computation of the graph curvature

(κϕ)(v) =
∑
u∼v

w(u, v)√
g(v)

(
1

‖∇vϕ‖
+

1

‖∇uϕ‖

)(
ϕ(v)√
g(v)

−
ϕ(u)√
g(u)

)
Unlike the graph Laplacian, the graph curvature is a non-linear

operator.
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Curvature operator (cont.)

• Another equivalent definition of the graph curvature based on the

gradient:

(κϕ)(v) :=
∑
e`v

1
√
g

(
∂

∂e

√
g

‖∇ϕ‖
∂ϕ

∂e

)∣∣∣∣
v

.

• An elegant property of the graph curvature

κϕ =
∂S1(ϕ)

∂ϕ
.
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Solving the optimization problem (p = 1)

Theorem. [Zhou and Schölkopf, 2004] The solution of the opti-

mization problem

argmin
f∈H(V )

{ ∑
v

∥∥∇vf
∥∥ +

µ

2
‖f − y‖2

}
satisfies

κf + µ(f − y) = 0.

No closed form solution.

Max Planck Institute for Biological Cybernetics 49



An iterative algorithm

Anisotropic information diffusion (curvature flow)(Zhou and Schölkopf,

2004)

f
(t+1)

(v) =
∑
u∼v

p
(t)

(u, v)f
(t)

(v) + p
(t)

(v, v)y(v), ∀v ∈ V

Remark The weight coefficients p(u, v) are adaptively updated at each iteration,

in addition to the classifying function being updated. This weight update causes the

diffusion inside clusters to be enhanced, and the diffusion across clusters to be

reduced.
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Compute the iteration coefficients: step 1

Compute the new weights m : E → R defined by by

m(u, v) = w(u, v)

(
1

‖∇uf‖
+

1

‖∇vf‖

)
.

Remark The smoother the function f at nodes u and v, the larger the function m

at edge (u, v).
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Compute the iteration coefficients: step 2

Compute the coefficients

p(u, v) =

m(u, v)√
g(u)g(v)∑

u∼v

m(u, v)

g(v)
+ µ

, if u 6= v;

and

p(v, v) =
µ∑

u∼v

m(u, v)

g(v)
+ µ

.
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A toy classification problem
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Classification on the spiral toy data. Top-left: toy data; top-right: spectral clustering;

bottom-left: 2-smoothness; bottom-right: 1-smoothness.
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Discrete analysis and regularization

• A basic differential calculus on graphs

• Discrete regularization and operators

? 2-smoothness (p = 2, heat flow, linear);

? 1-smoothness (p = 1, curvature flow, non-linear);

? ∞-smoothness (p = ∞, large margin)

• Directed graphs
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Discrete large margin classification (p =∞)

Discrete large margin (Zhou and Schölkopf, 2004):

argmin
f∈H(V )

{max
v

∥∥∇vf
∥∥ +

µ

2
‖f − y‖2}.

Only the worst case is considered!

Remark This is closely related to the classic graph bandwidth problem in

combinatorial mathematics (cf. Linial, 2002), which is a NP-hard problem and

has a polylogarithmic approximation.
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Discrete analysis and regularization

• Graph, gradient and divergence

• Discrete regularization and operators

? 2-smoothness (p = 2, heat flow, linear);

? 1-smoothness (p = 1, curvature flow, non-linear);

? ∞-smoothness (p = ∞, large margin)

• Directed graphs

Max Planck Institute for Biological Cybernetics 56



Classification and ranking on directed graphs

• The differential geometry on undirected graphs can be naturally

generalized to directed graphs (Zhou et al., 2004).
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Two key observations on WWW

• The pages in a densely linked subgraph perhaps belong to a common

topic. Therefore it is natural to force the classification function to

change slowly on densely linked subgraphs.

• The pairwise similarity is measured based on the mutual reinforcement

relationship between hub and authority (Kleinberg, 1998): a good hub

node points to many good authorities and a good authority node is

pointed to by many good hubs.
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The importance of directionality
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Classification on the WebKB dataset: student vs. the rest in each university. Taking

the directionality of edges into account can yield substantial accuracy gains.
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A closely related regularizer

• The 2-smoothness regularizer can be rewritten as (Zhou et al, 2003)

∑
u,v

w(u, v)

(
f(u)√
g(u)

−
f(v)√
g(v)

)2

• A closely related one∑
u,v

w(u, v)(f(u)− f(v))
2

is proposed by (Belkin and Niyogi, 2002, 2003; Zhu et al., 2003).

See also (Joachims, 2003) for a similar one.
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Similarities between the two regularizers

• Both can be rewritten into the quadratic forms:

∑
u,v

w(u, v)

(
f(u)√
g(u)

−
f(v)√
g(v)

)2

= f
T
D
−1

2(D −W )D
−1

2f

and ∑
u,v

w(u, v)(f(u)− f(v))
2

= f
T
(D −W )f.

• BothD−1
2(D−W )D−1

2 andD−W are called the graph Laplacian

(unfortunate truth).
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Differences between the two regularizers:
limit cases

• (Bousquet et al., 2003) showed the following limit consequence:∑
u,v

w(u, v)(f(u)− f(v))
2 →

∫
‖∇f(x)‖2

p
2
(x)dx.

• A conjecture:

∑
u,v

w(u, v)

(
f(u)√
g(u)

−
f(v)√
g(v)

)2

→
∫
‖∇f(x)‖2

p(x)dx.
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Difference between the two regularizers:
experiments (cont. )

4 10 15 20 25 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

# labeled points

te
st

 e
rr

or

Unnormalized Regularizer
Our method

[Note: A subset of USPS containing the digits from 1 to 4; the same RBF kernel for

all methods. ]
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Improve the unnormalized regularizer by
heuristics

• (Belkin and Niyogi, 2002, 2003) Choose a number k and construct a

k-NN graph with 0/1 weights over points. Using the weight matrix

as the affinity among points.

• (Zhu et al., 2003) Estimate the proportion of different classes based

on the labeled points, and then rescale the function based on the

estimated proportion.

Both of them just empirically approximate to the normalization in our

2-smoothness regularizer.
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Improve the unnormalized regularizer by
heuristics: experiments

4 10 15 20 25 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

# labeled points

te
st

 e
rr

or

Unnormalized Regularizer
Unnormalized Regularizer (+ heuristics)
Our method

[Note: A subset of USPS containing the digits from 1 to 4; the same RBF kernel for

all methods. ]
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Another related work: graph/cluster kernels

• Graph or cluster kernels (Smola and Kondor, 2003; Chapelle et al.,

2002): Descompose the (normalized) graph Laplacian K = UTΛU

and then replace the eigenvalues λ with ϕ(λ), where ϕ is a decreas-

ing function, to obtain the so-called graph kernel:

K̃ = U
T
diag[ϕ(λ1), . . . , ϕ(λn)]U.

• In the closed form of the p = 2 case, the matrix (µI + ∆)−1 can

be viewed as a graph kernel with ϕ(λ) = 1/(µ+ λ).
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Difference from graph/cluster kernels

• The matrix (µI + ∆)−1 is naturally derived from our regularization

framework for transductive inference. In contrast, graph/cluster ker-

nels are obtained by manipulating the eigenvalues.

• SVM combined with (µI + ∆)−1 does not work well in our trans-

ductive experiments.

• When p takes other values, e.g. p = 1, no corresponding kernel

exists any more.
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Outline

• Introduction to learn on discrete spaces

• Discrete analysis and regularization

• Related works

• Limitation and future works
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Limitation: How to beat our method?

One can construct arbitrarily bad problems for a given algorithm:

Theorem. [No Free Lunch, e.g., Devroye, 1996] For any algo-

rithm, any n and any ε > 0, there exists a distribution P such

that R∗ = 0 and

P
[
R(gn) ≥

1

2
− ε

]
= 1,

where gn is the function estimated by the algorithm based on the n

training examples.
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Limitation: How to beat our method? (cont.)
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(b) True labels
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Future work: Theory

We need a new statistical learning theory:

• How is a graph like a manifold?

The convergence of the discrete differential operators

• How does transductive inference converge?

Parallel to the bounds given in the context of inductive inference

• What is the transductive principle?

Parallel to the inductive inference principle Structural Risk Minimiza-

tion
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Future work: Algorithms

From kernelize to transductize (or discretize):

• Learning with graph data (undirected, directed, bipartite, hyper-

graph), time series data, . . .

• Multi-label learning, hierarchical classification, regression, . . .

• Active learning, selection problems, . . .

• Unsupervised learning combined with partial prior knowledge, such as

clustering, manifold learning, . . .

. . .
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Future work: Applications

• Computational biology

• Web information retrieval

• Natural language processing

. . .
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Future work: Beyond machine learning

The discrete differential calculus and geometry over discrete objects

provides the ”exact” computation of the differential operators, and can

be applied to more problems:

• Images processing/Computer graphics: Digital images/graphics are

represented as lattices/graphs

• Structure and evolution of the real-world networks: WWW, Inter-

net, biological networks, . . . (e.g., what do the curvatures of these

networks mean?)

. . .
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This talk is based on our following work:

• Differential Geometry D. Zhou and B. Schölkopf. Transductive Inference with
Graphs. Technical Report, Max Planck Institute for Biological Cybernetics, August,
2004.

• Directed Graphs D. Zhou, B. Schölkopf and T. Hofmann. Semi-supervised Learn-
ing on Directed Graphs. NIPS 2004.

• Undirected Graphs D. Zhou, O. Bousquet, T.N. Lal, J. Weston and B. Schölkopf.
Learning with Local and Global Consistency. NIPS 2003.

• Ranking D. Zhou, J. Weston, A. Gretton, O. Bousquet and B. Schölkopf. Rank-
ing on Data Manifolds. NIPS 2003.

• Bioinformatics J. Weston, A. Elisseeff, D. Zhou, C.Leslie and W.S. Noble. Pro-
tein ranking: from local to global structure in the protein similarity network. PNAS
101(17) (2004).

• Bioinformatics J. Weston, C. Leslie, D. Zhou, A. Elisseeff and W. S. Noble.
Semi-Supervised Protein Classification using Cluster Kernels. NIPS 2003.
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Conclusions

• Developed the discrete analysis and geometry over discrete objects

• Constructed the discrete regularizer and the effective transductive

algorithms are derived

• Validated the transductive algorithms on many real-world problems

Transduction and Induction are the two sides of machine learning:

discrete vs. continuous. Two sides of the same.
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. . . perhaps the success of the Heisenberg method points to a purely

algebraic method of description of nature, that is, to the elimination of

continuous functions from physics. Then, however, we must give up, by

principle, the space-time continuum . . .

— Albert Einstein

Although there have been suggestions that space-time may have a

discrete structure I see no reason to abandon the continuum theories

that have been so successful.

— Stephen Hawking
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