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ABSTRACT  

 
Motivated by the particular problems involved in 
communicating with “locked-in” paralysed patients, we aim 
to develop a brain-computer interface that uses auditory 
stimuli. We describe a paradigm that allows a user to make 
a binary decision by focusing attention on one of two 
concurrent auditory stimulus sequences. Using Support 
Vector Machine classification and Recursive Channel 
Elimination on the independent components of averaged 
event-related potentials, we show that an untrained user's 
EEG data can be classified with an encouragingly high level 
of accuracy. This suggests that it is possible for users to 
modulate EEG signals in a single trial by the conscious 
direction of attention, well enough to be useful in BCI.† 
  
 

1.  INTRODUCTION 
 
In some cases, it has been possible to allow an entirely 
paralysed or “locked-in” patient to communicate, using 
brain signals measured externally by EEG. The patient is 
trained, usually over the course of several months, to 
produce two distinguishable types of signal (one 
representing “yes” and the other “no”) which are then 
classified by computer. Successful approaches to 
brain-computer interfaces (BCI) include paradigms based 
on slow cortical potentials [1], signals from the motor 
and pre-motor areas related to the imagination of 
voluntary movements [2,3] and evoked potentials in 
response to visual stimulus events [4]. The different 
paradigms work to varying degrees, depending on the 
patient. In some cases, long immobility and the 
degeneration of the pyramidal cells of the motor cortex 
may mean the patient can no longer produce classifiable 
imagined-movement signals. In the most severe cases, 
where the eyes are completely immobile, the visual 
modality becomes too limited to be useful for 
presentation of stimuli and feedback. Thus, there is 
considerable motivation to explore new BCI paradigms, 
and in particular to develop systems that rely only on 
auditory or tactile stimuli, since these modalities usually 
function fully in paralysed patients. 
                    
†NB: an extended analysis of these data will be presented 
at NIPS 2004, Vancouver. 

We present the results of experiments on healthy subjects, 
designed to develop a paradigm for BCI in which a user 
can make a binary choice by directing his or her attention 
to one of two concurrent auditory stimulus streams. The 
paradigm is based on results from the 60’s and 70’s from 
Hillyard et al. [5] and others (see [6,7] for a review) 
which indicate that, when a person listens to two 
sequences of auditory stimuli from the left and right, the 
event-related potentials (ERPs) in the EEG signal are 
modulated by the listener’s selective attention to one or 
the other. Their results, usually measured with just one or 
two electrodes, are significant when averaged over a 
large number of ERPs. By using machine-learning 
techniques to classify signals measured from multiple 
electrodes, we aim to determine whether single trials, 
each lasting no more than a few seconds and therefore 
containing only a small number of ERPs, are classifiable 
enough for the effect to be potentially useful in BCI. 
 
Rather than relying on extensive training of the subjects 
to meet a fixed criterion, our approach is to train our 
classifier (offline) to use the signals that an untrained 
subject can produce in a single two-hour experimental 
session. 
 

2.  EXPERIMENTAL SETUP 
 

EEG signals were recorded from 15 healthy untrained 
subjects (9 female, 6 male) between the ages of 20 and 
38, using 39 silver chloride electrodes, referenced to the 
ears. An additional EOG electrode was positioned lateral 
to and slightly below the left eye, to record eye 
movement artifacts—blinks and horizontal and vertical 
saccades all produced clearly identifiable signals on the 
EOG channel. The signals were filtered by an analog 
band-pass filter between 0.1 and 40 Hz, before being 
sampled at 256 Hz. 
 
Subjects sat in front of a computer monitor and 
performed eight 10-minute blocks each consisting of 50 
trials. Each trial lasted 6.5 seconds, with a pause of 
between 2 and 4 seconds in between trials for the subject 
to relax. For the duration of the trial, a fixation point was 
visible on the screen, and subjects were asked to keep 
their gaze fixed on this, minimizing as far as possible eye 



 

 

movements, blinks and swallowing, and not making any 
voluntary muscle movements, since we wished to ensure 
that the signals would be as free as possible from artifacts 
(i.e. signals that could not be obtained from a paralysed 
patient). 
 
Timing of the events in a single trial was as follows (in 
milliseconds after the start of the trial): 
 

0 fixation point on 
1000 visual cue on 
1500 visual cue off 
2000 auditory stimuli start 
6000 auditory stimuli stop 
6500 fixation point off 

 
The auditory stimuli were presented from speakers 
situated to the subject’s left and right. The visual cue on 
each trial was an arrow pointing left or right, indicating 
whether the subject should attend to the left or right 
stimulus sequence. In each block of 50 trials, the left and 
right stimuli were cued 25 times each, in random order. 
 
The auditory stimuli were two periodic sequences of 
50-msec-long square-wave beeps. Each sequence 
contained “target” and “non-target” beeps: the first three 
in the sequence were always non-targets, after which they 
could be targets with independent probability 0.3.  The 
right-hand sequence consisted of eight beeps of 
frequencies 1500 Hz (non-target) and 1650 Hz (target), 
repeating with a period of 490 msec. The left-hand 
sequence consisted of seven beeps of frequencies 800 Hz 
(non-target) and 880 Hz (target), starting 70 msec after 
start of the right-hand sequence and repeating with a 
period of 555 msec. 
 
The subject’s task was to count the number of target 
beeps in the sequence indicated by the arrow, ignoring 
the other sequence. In the pause between trials, they were 
instructed to report the number of target beeps using a 
numeric keypad (in order to keep the measurement period 
free of movement artifacts, a few practice trials usually 
had to be run beforehand so that the subject learned not to 
start the hand movement for response before the fixation 
point disappeared).  
 
The sequences differed in location and pitch in order to 
help the subjects focus their attention on one sequence 
and ignore the other. The regular repetition of the beeps, 
and the different periodicities of the two sequences, were 
designed to allow the average ERP to a left-hand beep on 
a single trial to be examined with minimal contamination 
by ERPs to right-hand beeps, and vice versa: when the 
periods of one sequence are averaged, signals correlated 
with that sequence add in phase, whereas signals 
correlated with the other sequence spread out, out of 
phase. Comparison of the average response to a left beep 
with the average response to a right beep, on a single 
trial, should thus emphasize any modulating effect of the 

direction of attention on the ERP, of the kind described 
by Hillyard et al. [5]. 
 
 

3.  ANALYSIS AND RESULTS 
 
Each trial from each subject was first examined by eye, 
and trials were rejected if they contained obvious large 
artifact signals caused by blinks or saccades (visible in 
the EOG and across most of the frontal positions), small 
periodic eye movements, or other muscle movements 
(neck and brow, judged from electrode positions O9 and 
O10, Fp1, Fpz and Fp2). Between 6 and 228 trials had to 
be rejected out of 400, depending on the subject. 
 
For each subject, trial and electrode, the average ERP 
following a left-side beep was computed, and then the 
average ERP following a right-side beep. These two 
average signals were then concatenated: the result was 
142 (left) + 125 (right) = 267 time samples in each of the 
40 channels (39 EEG + 1 EOG), for a total of 10680 input 
dimensions to the classifier. 
 
The classifier used was a linear hard-margin Support 
Vector Machine (SVM) [8]. To evaluate its performance, 
the trials from a single subject were split into ten 
non-overlapping partitions of equal size: each such 
partition was used in turn as a test set for evaluating the 
performance of the classifier trained on the other 90% of 
the trials. Before training, linear Independent Component 
Analysis (ICA) was carried out on the training set in 
order to perform blind source separation—this is a 
common technique in the analysis of EEG data [9,10], 
since signals measured through the skull, meninges and 
cerebro-spinal fluid are of low spatial resolution, and the 
activity measured from neighbouring EEG electrodes can 
be assumed to be highly correlated mixtures of the 
underlying sources. For the purposes of the ICA, the 
concatenation of all the preprocessed signals from one 
EEG channel, from all trials in the training partition, was 
treated as a single mixture signal. A 40-by-40 separating 
matrix was obtained using the stabilized deflation 
algorithm from version 2.1 of FastICA [11]. This matrix, 
computed only from the training set, was then used to 
separate the signals in both the training set and the test 
set. Then, the signals were centered and normalized: for 
each averaged (unmixed) ERP in each of the 40 ICs of 
each trial, the mean was subtracted, and the signal was 
divided by its 2-norm. Thus the entry Kij in the kernel 
matrix of the SVM was proportional to the sum of the 
coefficients of correlation between corresponding epochs 
in trials i and j. The SVM was then trained and tested. 
Single-trial error rate was estimated as the mean 
proportion of misclassified test trials across the ten folds. 
For comparison, the classification was also performed on 
the mixture signals without ICA, and with and without 
the normalizing step. 
 
Results are shown in table 1. For readability, standard 
error values for the estimated error rates are not shown: 



 

 

standard error was typically ±0.025, and maximally 
±0.04. It can be seen that the best error rate obtainable 
with a given subject varies according to the subject, 
between 3% and 37%, in a way that is not explained by 
the differences in the numbers of good (artifact-free) 
trials available. ICA generally improved the results, by 
anything up to 14%. Normalization generally produced a 
small improvement. 
 

- - ICA ICA subj. #good 
trials - norm’d - norm’d 

CM 326 0.08 0.06 0.06 0.04 
CN 250 0.26 0.19 0.28 0.14 
GH 198 0.34 0.27 0.35 0.22 
JH 348 0.21 0.19 0.14 0.08 
KT 380 0.23 0.21 0.15 0.07 
KW 394 0.18 0.14 0.06 0.03 
TD 371 0.22 0.18 0.15 0.10 
TT 367 0.32 0.31 0.33 0.32 
AH 353 0.22 0.22 0.17 0.16 
AK 172 0.35 0.31 0.34 0.22 
CG 271 0.37 0.29 0.31 0.28 
CH 375 0.31 0.28 0.26 0.22 
DK 241 0.34 0.34 0.35 0.30 
KB 363 0.21 0.21 0.15 0.10 
SK 239 0.47 0.43 0.40 0.37 

Table 1: error rates for 15 subjects with and without ICA, 
and with and without normalization (the lowest error rate 

for each subject is in bold) 

Thus, promising results can be obtained using the 
average ERP in response to a small number of auditory 
stimuli, using ICA followed by per-channel 
normalization (last results column): error rates of 5–15% 
for some subjects are comparable with the performance 
of, for example, well-trained patients in an SCP 
paradigm [1], and correspond to information transfer 
rates of 0.4–0.7 bits per trial (say, 4–7 bits per minute). 
  
In order to examine the extent to which the 
dimensionality of the classification problem could be 
reduced, recursive feature elimination [12] was 
performed (limited now to normalized, unmixed data). 
For each of ten folds, ICA and normalization was 
performed, then an SVM was trained and tested. Each 
independent component contributes 267 features 
(averaged, unmixed time samples) to the representation 
of a trial, so the elimination score for an IC was equal to 
the sum of the squares of the 267 elements of the 
hyperplane normal vector from the trained SVM, 
corresponding to those features. The IC with the lowest 
score was deemed to be the least influential for 
classification, and its set of 267 features was removed 
from the representation. Then the SVM was re-trained 
and re-tested, and the elimination process iterated until 
one channel remained. The removal of batches of 
features in this way is similar to the Recursive Channel 

Elimination approach to BCI introduced by Lal et al. [3], 
except that, here, independent components are removed 
instead of mixtures. A convenient acronym would 
therefore be RICE, for Recursive Independent 
Component Elimination. 
 
The results of feature elimination are plotted in figure 1, 
showing estimated error rates averaged over ten folds 
against the number of ICs used for classification. Each 
subject's initials, together with the number of useable 
trials that subject performed, are printed to the right of 
the corresponding curve. It can be seen that a fairly large 
number of ICs (around 20–25 out of the 40) contribute to 
the classification: this may indicate that the useful 
information in the EEG signals is diffused fairly widely 
between the areas of the brain from which we are 
detecting signals (indeed, this is in accordance with much 
auditory-ERP and mismatch negativity research, in 
which strong signals are often measured at the vertex, 
quite far from the auditory cortex [5–7]). One of the 
motivations for reducing the dimensionality of the data is 
to determine whether performance can be improved as 
irrelevant noise is eliminated, and as the probability of 
overfitting decreases. However, these factors do not seem 
to limit performance on the current data: for most 
subjects, performance does not improve as features are 
eliminated, instead remaining roughly constant until 
fewer than 20–25 ICs remain. A possible exception is 
KT, whose performance may improve by 2–3% after 
elimination of 20 components, and a clearer exception is 
CG, for whom elimination of 25 components yields an 
improvement of roughly 10%. 
 
The ranking returned by the RICE method is somewhat 
difficult to interpret, not least because each fold of the 
procedure can compute a different ICA decomposition, 
whose independent components are not necessarily 
readily identifiable with one another.  A thorough 
analysis is not possible here—however, with the mixture 
weightings for many ICs spread very widely around the 
electrode array, we found no strong evidence for or 
against the particular involvement of muscle movement 
artifact signals in the classification. 
 
RICE was also carried out using the full 400 trials for 
each subject (results not shown). Despite the (sometimes 
drastic) reduction in the number of trials, rejection by eye 
of artifact trials did not raise the classification error rate 
by an appreciable amount. The one exception was subject 
SK, for whom the probability of mis-classification 
increased by about 0.1 when 161 trials containing strong 
movement signals were removed—clearly this subject's 
movements were classifiably dependent on whether he 
was attending to the left or to the right. 
 



 

 

 
 

Figure 1: Results of 
Recursive Independent Component Elimination 

 
 

4.  CONCLUSION 
 

Despite wide variation in performance between subjects, 
which is to be expected in the analysis of EEG data, our 
classification results suggest that it is possible for a user 
with no previous training to direct conscious attention, 
and thereby modulate the event-related potentials that 
occur in response to auditory stimuli reliably enough, on 
a single trial, to provide a useful basis for a BCI. The 
information used by the classifier seems to be diffused 
fairly widely over the scalp. While the ranking from 
recursive independent component elimination did not 
reveal any evidence of an overwhelming contribution 
from artifacts related to muscle activity, it is not possible 
to rule out completely the involvement of such unwanted 
signals—possibly the only way to be sure of this is to 
implement the interface with locked-in patients, 
preliminary experiments for which are in progress. 
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