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SUMMARY

We briefly describe the main ideas of statistical learning theory, support vector machines (SVMs), and
kernel feature spaces. We place particular emphasis on a description of the so-called n-SVM, including
details of the algorithm and its implementation, theoretical results, and practical applications. Copyright
# 2005 John Wiley & Sons, Ltd.
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1. AN INTRODUCTORY EXAMPLE

Suppose we are given empirical data

ðx1; y1Þ; . . . ; ðxm; ymÞ 2 X� f�1g ð1Þ

Here, the domain X is some non-empty set that the patterns xi are taken from; the yi are called
labels or targets.

Unless stated otherwise, indices i and j will always be understood to run over the training set,
i.e. i; j ¼ 1; . . . ;m:

Note that we have not made any assumptions on the domain X other than it being a set. In
order to study the problem of learning, we need additional structure. In learning, we want to be
able to generalize to unseen data points. In the case of pattern recognition, this means that given
some new pattern x 2 X; we want to predict the corresponding y 2 f�1g: By this we mean,
loosely speaking, that we choose y such that ðx; yÞ is in some sense similar to the training
examples. To this end, we need similarity measures in X and in f�1g: The latter is easy, as two
target values can only be identical or different. For the former, we require a similarity measure

k : X�X! R

ðx; x0Þ/kðx;x0Þ
ð2Þ

Copyright # 2005 John Wiley & Sons, Ltd.

*Correspondence to: Bernhard Sch .oolkopf, Max Planck Institute for Biological Cybernetics, T .uubingen, Germany.
yE-mail: bernhard.schoelkopf@tuebingen.mpg.de
zParts of the present article are based on [1].



i.e. a function that, given two examples x and x0; returns a real number characterizing their
similarity. For reasons that will become clear later, the function k is called a kernel [2–4].

A type of similarity measure that is of particular mathematical appeal are dot products. For
instance, given two vectors x;x0 2 RN ; the canonical dot product is defined as

ðx � x0Þ :¼
XN
i¼1

ðxÞiðx
0Þi ð3Þ

Here, ðxÞi denotes the ith entry of x:
The geometrical interpretation of this dot product is that it computes the cosine of the angle

between the vectors x and x0; provided they are normalized to length 1. Moreover, it allows
computation of the length of a vector x as

ffiffiffiffiffiffiffiffiffiffiffiffi
ðx � xÞ

p
; and of the distance between two vectors as

the length of the difference vector. Therefore, being able to compute dot products amounts to
being able to carry out all geometrical constructions that can be formulated in terms of angles,
lengths and distances.

Note, however, that we have not made the assumption that the patterns live in a dot product
space. In order to be able to use a dot product as a similarity measure, we therefore first need to
transform them into some dot product space H; which need not be identical to RN : To this end,
we use a map

F : X!H ð4Þ

x/x

The space H is called a feature space. To summarize, there are three benefits to transform the
data into H

1. It lets us define a similarity measure from the dot product in H;

kðx;x0Þ :¼ ðx � x0Þ ¼ ðFðxÞ � Fðx0ÞÞ ð5Þ

2. It allows us to deal with the patterns geometrically, and thus lets us study learning
algorithm using linear algebra and analytic geometry.

3. The freedom to choose the mapping F will enable us to design a large variety of learning
algorithms. For instance, consider a situation where the inputs already live in a dot product
space. In that case, we could directly define a similarity measure as the dot product.
However, we might still choose to first apply a non-linear map F to change the
representation into one that is more suitable for a given problem and learning algorithm.

We are now in the position to describe a pattern recognition learning algorithm that is
arguable one of the simplest possible. The basic idea is to compute the means of the two classes
in feature space,

cþ ¼
1

mþ

X
fi:yi¼þ1g

xi ð6Þ

c� ¼
1

m�

X
fi:yi¼�1g

xi ð7Þ
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where mþ and m� are the number of examples with positive and negative labels, respectively (see
Figure 1). We then assign a new point x to the class whose mean is closer to it. This geometrical
construction can be formulated in terms of dot products. Half-way in between cþ and c� lies the
point c :¼ ðcþ þ c�Þ=2: We compute the class of x by checking whether the vector connecting c

and x encloses an angle smaller than p=2 with the vector w :¼ cþ � c� connecting the class
means, in other words

y ¼ sgnððx� cÞ � wÞ

y ¼ sgnððx� ðcþ þ c�Þ=2Þ � ðcþ � c�ÞÞ

¼ sgnððx � cþÞ � ðx � c�Þ þ bÞ ð8Þ

Here, we have defined the offset

b :¼ 1
2
ðjjc�jj2 � jjcþjj2Þ ð9Þ

It will be proved instructive to rewrite this expression in terms of the patterns xi in the input
domain X: To this end, note that we do not have a dot product in X; all we have is the similarity
measure k (cf. (5)). Therefore, we need to rewrite everything in terms of the kernel k evaluated
on input patterns. To this end, substitute (6) and (7) into (8) to get the decision function

y ¼ sgn
1

mþ

X
fi:yi¼þ1g

ðx � xiÞ �
1

m�

X
fi:yi¼�1g

ðx � xiÞ þ b

 !

¼ sgn
1

mþ

X
fi:yi¼þ1g

kðx;xiÞ �
1

m�

X
fi:yi¼�1g

kðx; xiÞ þ b

 !
ð10Þ

Similarly, the offset becomes

b :¼
1

2

1

m2
�

X
fði; jÞ:yi¼yj¼�1g

kðxi; xjÞ �
1

m2
þ

X
fði; jÞ:yi¼yj¼þ1g

kðxi; xjÞ

0
@

1
A ð11Þ

o
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Figure 1. A simple geometric classification algorithm: given two classes of points (depicted by ‘o’ and ‘þ’),
compute their means cþ; c� and assign a test pattern x to the one whose mean is closer. This can be done by
looking at the dot product between x� c (where c ¼ ðcþ þ c�Þ=2Þ and w :¼ cþ � c�; which changes sign as
the enclosed angle passes through p=2: Note that the corresponding decision boundary is a hyperplane (the

dotted line) orthogonal to w (from [1]).
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Let us consider one well-known special case of this type of classifier. Assume that the class
means have the same distance to the origin (hence b ¼ 0), and that k can be viewed as a density,
i.e. it is positive and has integral 1,Z

X

kðx; x0Þ dx ¼ 1 for all x0 2 X ð12Þ

In order to state this assumption, we have to require that we can define an integral on X:
If the above holds true, then (10) corresponds to the so-called Bayes decision boundary

separating the two classes, subject to the assumption that the two classes were generated from
two probability distributions that are correctly estimated by the Parzen windows estimators of
the two classes,

p1ðxÞ :¼
1

mþ

X
fi:yi¼þ1g

kðx; xiÞ ð13Þ

p2ðxÞ :¼
1

m�

X
fi:yi¼�1g

kðx; xiÞ ð14Þ

Given some point x; the label is then simply computed by checking which of the two, p1ðxÞ or
p2ðxÞ; is larger, which directly leads to (10). Note that this decision is the best we can do if we
have no prior information about the probabilities of the two classes. For further details, see [1].

Classifier (10) is quite close to the types of learning machines that we will be interested in. It is
linear in the feature space, and while in the input domain, it is represented by a kernel expansion
in terms of the training points. It is example-based in the sense that the kernels are centred on
the training examples, i.e. one of the two arguments of the kernels is always a training example.
The main points that the more sophisticated techniques to be discussed later will deviate from
(10) are in the selection of the examples that the kernels are centred on, and in the weights that
are put on the individual data in the decision function. Namely, it will no longer be the case that
all training examples appear in the kernel expansion, and the weights of the kernels in the
expansion will no longer be uniform. In the feature space representation, this statement
corresponds to saying that we will study all normal vectors w of decision hyperplanes that can be
represented as linear combinations of the training examples. For instance, we might want to
remove the influence of patterns that are very far away from the decision boundary, either since
we expect that they will not improve the generalization error of the decision function, or since
we would like to reduce the computational cost of evaluating the decision function (cf. (10)).
The hyperplane will then only depend on a subset of training examples, called support vectors.

2. LEARNING PATTERN RECOGNITION FROM EXAMPLES

With the above example in mind, let us now consider the problem of pattern recognition in a
more formal setting [5, 6], following the introduction of Sch .oolkopf et al. [7]. In two-class pattern
recognition, we seek to estimate a function

f : X! f�1g ð15Þ

based on input–output training data (1). We assume that the data were generated independently
from some unknown (but fixed) probability distribution Pðx; yÞ: Our goal is to learn a function
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that will correctly classify unseen examples ðx; yÞ; i.e. we want f ðxÞ ¼ y for examples ðx; yÞ that
were also generated from Pðx; yÞ:

If we put no restriction on the class of functions that we choose our estimate f from, however,
even a function which does well on the training data, e.g. by satisfying f ðxiÞ ¼ yi for all i ¼
1; . . . ;m; need not generalize well to unseen examples. To see this, note that for each function f
and any test set ð %xx1; %yy1Þ; . . . ; ð %xx %mm; %yy %mmÞ 2 R

N � f�1g; satisfying f %xx1; . . . ; %xx %mmg \ fx1; . . . ; xmg ¼ fg;
there exists another function f n such that f nðxiÞ ¼ f ðxiÞ for all i ¼ 1; . . . ;m; yet f nð %xxiÞ=f ð %xxiÞ
for all i ¼ 1; . . . ; %mm: As we are only given the training data, we have no means of selecting which
of the two functions (and hence which of the completely different sets of test label predictions) is
preferable. Hence, only minimizing the training error (or empirical risk),

Remp½ f � ¼
1

m

Xm
i¼1

1

2
jf ðxiÞ � yij ð16Þ

does not imply a small test error (called risk), averaged over test examples drawn from the
underlying distribution Pðx; yÞ;

R½ f � ¼
Z

1

2
jf ðxÞ � yj dPðx; yÞ ð17Þ

Statistical learning theory [5, 6, 8, 9], or VC (Vapnik–Chervonenkis) theory, shows that it is
imperative to restrict the class of functions that f is chosen from to one which has a capacity that
is suitable for the amount of available training data. VC theory provides bounds on the test
error. The minimization of these bounds, which depend on both the empirical risk and the
capacity of the function class, leads to the principle of structural risk minimization [5]. The best-
known capacity concept of VC theory is the VC dimension, defined as the largest number h of
points that can be separated in all possible ways using functions of the given class. An example
of a VC bound is the following: if h5m is the VC dimension of the class of functions that the
learning machine can implement, then for all functions of that class, with a probability of at
least 1� Z; the bound

Rð f Þ4Rempð f Þ þ f
h

m
;
logðZÞ
m

� �
ð18Þ

holds, where the confidence term f is defined as

f
h

m
;
logðZÞ
m

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðlogð2m=hÞ þ 1Þ � logðZ=4Þ

m

r
ð19Þ

Tighter bounds can be formulated in terms of other concepts, such as the annealed VC entropy
or the Growth function. These are usually considered to be harder to evaluate, but they play a
fundamental role in the conceptual part of VC theory [6]. Alternative capacity concepts that can
be used to formulate bounds include the fat shattering dimension [10].

The bound (18) deserves some further explanatory remarks. Suppose we wanted to learn a
‘dependency’ where Pðx; yÞ ¼ PðxÞ � PðyÞ; i.e. where the pattern x contains no information about
the label y; with uniform PðyÞ: Given a training sample of fixed size, we can then surely come up
with a learning machine which achieves zero training error (provided we have no examples
contradicting each other). However, in order to reproduce the random labelling, this machine
will necessarily require a large VC dimension h: Thus, the confidence term (19), increasing
monotonically with h; will be large, and bound (18) will not support possible hopes that due to
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the small training error, we should expect a small test error. This makes it understandable how
(18) can hold independent of assumptions about the underlying distribution Pðx; yÞ: it always
holds (provided that h5m), but it does not always make a non-trivial prediction}a bound on
an error rate becomes void if it is larger than the maximum error rate. In order to get non-trivial
predictions from (18), the function space must be restricted such that the capacity (e.g. VC
dimension) is small enough (in relation to the available amount of data).

3. HYPERPLANE CLASSIFIERS

In the present section, we shall describe a hyperplane learning algorithm that can be performed
in a dot product space (such as the feature space that we introduced previously). As described in
the previous section, to design learning algorithms, one needs to come up with a class of
functions whose capacity can be computed.

Vapnik and Leaner [11] considered the class of hyperplanes

ðw � xÞ þ b ¼ 0; w 2 RN ; b 2 R ð20Þ

corresponding to decision functions

f ðxÞ ¼ sgnððw � xÞ þ bÞ ð21Þ

and proposed a learning algorithm for separable problems, termed the generalized portrait, for
constructing f from empirical data. It is based on two facts. First, among all hyperplanes
separating the data, there exists a unique one yielding the maximum margin of separation
between the classes,

max
w;b

minfjjx� xi jj : x 2 R
N ; ðw � xÞ þ b ¼ 0; i ¼ 1; . . . ;mg ð22Þ

Second, the capacity decreases with increasing margin.
To construct this optimal hyperplane (cf. Figure 2), one solves the following optimization

problem:

minimizew;b
1
2
jjwjj2

subject to yi � ððw � xiÞ þ bÞ51; i ¼ 1; . . . ;m
ð23Þ

A way to solve (23) is through its Lagrangian dual:

max
a50

ðmin
w;b

Lðw; b; aÞÞ ð24Þ

where

Lðw; b;aÞ ¼ 1
2
jjwjj2 �

Xm
i¼1

aiðyi � ððxi � wÞ þ bÞ � 1Þ ð25Þ

The Lagrangian L has to be minimized with respect to the primal variables w and b and
maximized with respect to the dual variables ai: For a non-linear problem like (23), called the
primal problem, there are several closely related problems of which the Lagrangian dual is an
important one. Under certain conditions, the primal and dual problems have the same optimal
objective values. Therefore, we can instead solve the dual which may be an easier problem than
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the primal. In particular, we will see in Section 4 that when working in feature spaces, solving
the dual may be the only way to train SVM.

Let us try to get some intuition for this primal–dual relation. Assume ð %ww; %bbÞ is an optimal
solution of the primal with the optimal objective value g ¼ 1

2
jj %wwjj2: Thus, no ðw; bÞ satisfies

1
2
jjwjj25g and yi � ððw � xiÞ þ bÞ51; i ¼ 1; . . . ;m ð26Þ

With (26), there is %aa50 such that for all w; b

1

2
jjwjj2 � g�

Xm
i¼1

%aaiðyi � ððxi � wÞ þ bÞ � 1Þ50 ð27Þ

We do not provide a rigorous proof here but details can be found in, for example, Reference
[13]. Note that for general convex programming this result requires some additional conditions
on constraints which are now satisfied by our simple linear inequalities.

Therefore, (27) implies

max
a50

min
w;b

Lðw; b;aÞ5g ð28Þ

On the other hand, for any a;

min
w;b

Lðw; b;aÞ4Lð %ww; %bb;aÞ

so

max
a50

min
w;b

Lðw; b; aÞ4max
a50

Lð %ww; %bb;aÞ ¼ 1
2
jj %wwjj2 ¼ g ð29Þ

Therefore, with (28), the inequality in (29) becomes an equality. This property is the strong
duality where the primal and dual have the same optimal objective value. In addition, putting

Figure 2. A binary classification toy problem: separate balls from diamonds. The optimal hyperplane is
orthogonal to the shortest line connecting the convex hulls of the two classes (dotted), and intersects it half-
way between the two classes. The problem is separable, so there exists a weight vector w and a threshold b
such that yi � ððw � xiÞ þ bÞ > 0 ði ¼ 1; . . . ;mÞ: Rescaling w and b such that the point(s) closest to the
hyperplane satisfy jðw � xiÞ þ bj ¼ 1; we obtain a canonical form ðw; bÞ of the hyperplane, satisfying yi �
ððw � xiÞ þ bÞ51: Note that in this case, the margin, measured perpendicularly to the hyperplane, equals
2=jjwjj: This can be seen by considering two points x1; x2 on opposite sides of the margin, i.e. ðw � x1Þ þ b ¼

1; ðw � x2Þ þ b ¼ �1; and projecting them onto the hyperplane normal vector w=jjwjj (from [12]).
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ð %ww; %bbÞ into (27), with %aai50 and yi � ððxi � %wwÞ þ %bbÞ � 150;

%aai � ½yiððxi � %wwÞ þ %bbÞ � 1� ¼ 0; i ¼ 1; . . . ;m ð30Þ

which is usually called the complementarity condition.
To simplify the dual, as Lðw; b;aÞ is convex when a is fixed, for any given a;

@

@b
Lðw; b; aÞ ¼ 0;

@

@w
Lðw; b; aÞ ¼ 0 ð31Þ

leads to Xm
i¼1

aiyi ¼ 0 ð32Þ

and

w ¼
Xm
i¼1

aiyixi ð33Þ

As a is now given, we may wonder what (32) means. From the definition of the Lagrangian, ifPm
i¼1 aiyi=0; we can decrease �b

Pm
i¼1 aiyi in Lðw; b;aÞ as much as we want. Therefore, by

substituting (33) into (24), the dual problem can be written as

max
a50

Pm
i¼1 ai � 1

2

Pm
i; j¼1 aiajyiyjðxi � xjÞ if

Pm
i¼1 aiyi ¼ 0

�1 if
Pm

i¼1 aiyi=0

(
ð34Þ

As �1 is definitely not the maximal objective value of the dual, the dual optimal solution does
not happen when

Pm
i¼1 aiyi=0: Therefore, the dual problem is simplified to finding multipliers

ai which

maximize
a2Rm

Xm
i¼1

ai �
1

2

Xm
i; j¼1

aiajyiyjðxi � xjÞ ð35Þ

subject to ai50; i ¼ 1; . . . ;m and
Xm
i¼1

aiyi ¼ 0 ð36Þ

This is the dual SVM problem that we usually refer to. Note that (30), (32), and ai4=0 for all i,
are called the Karush–Kuhn–Tucker (KKT) optimality conditions of the primal problem.
Except an abnormal situation where all optimal ai are zero, b can be computed using (30).

The discussion from (31) to (33) implies that we can consider a different form of dual
problem:

maximizew;b;a50 Lðw; b;aÞ

subject to
@

@b
Lðw; b; aÞ ¼ 0;

@

@w
Lðw; b;aÞ ¼ 0

ð37Þ

This is the so-called Wolfe dual for convex optimization, which is a very early work in duality
[14]. For convex and differentiable problems, it is equivalent to the Lagrangian dual though the
derivation of the Lagrangian dual more easily shows the strong duality results. Some notes
about the two duals are in, for example, [15, Section 5.4].
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Following the above discussion, the hyperplane decision function can be written as

f ðxÞ ¼ sgn
Xm
i¼1

yiai � ðx � xiÞ þ b

 !
ð38Þ

The solution vector w thus has an expansion in terms of a subset of the training patterns, namely
those patterns whose ai is non-zero, called support vectors. By (30), the Support Vectors lie on
the margin (cf. Figure 2). All remaining examples of the training set are irrelevant: their
constraint (23) does not play a role in the optimization, and they do not appear in expansion
(33). This nicely captures our intuition of the problem: as the hyperplane (cf. Figure 2) is
completely determined by the patterns closest to it, the solution should not depend on the other
examples.

The structure of the optimization problem closely resembles those that typically arise in
Lagrange’s formulation of mechanics. Also there, often only a subset of the constraints become
active. For instance, if we keep a ball in a box, then it will typically roll into one of the corners.
The constraints corresponding to the walls which are not touched by the ball are irrelevant, the
walls could just as well be removed.

Seen in this light, it is not too surprising that it is possible to give a mechanical interpretation
of optimal margin hyperplanes [16]: If we assume that each support vector xi exerts a
perpendicular force of size ai and sign yi on a solid plane sheet lying along the hyperplane, then
the solution satisfies the requirements of mechanical stability. Constraint (32) states that the
forces on the sheet sum to zero; and (33) implies that the torques also sum to zero, via

P
i xi �

yiai � w=jjwjj ¼ w� w=jjwjj ¼ 0:
There are theoretical arguments supporting the good generalization performance of the

optimal hyperplane [5, 8, 17–19]. In addition, it is computationally attractive, since it can be
constructed by solving a quadratic programming problem.

4. OPTIMAL MARGIN SUPPORT VECTOR CLASSIFIERS

We now have all the tools to describe support vector machines [1, 6]. Everything in the last
section was formulated in a dot product space. We think of this space as the feature space H
described in Section 1. To express the formulas in terms of the input patterns living in X; we
thus need to employ (5), which expresses the dot product of bold face feature vectors x;x0 in
terms of the kernel k evaluated on input patterns x;x0;

kðx; x0Þ ¼ ðx � x0Þ ð39Þ

This can be done since all feature vectors only occurred in dot products. The weight vector (cf.
(33)) then becomes an expansion in feature space,} and will thus typically no longer correspond
to the image of a single vector from input space. We thus obtain decision functions of the more

}This constitutes a special case of the so-called representer theorem, which states that under fairly general conditions, the
minimizers of objective functions which contain a penalizer in terms of a norm in feature space will have kernel
expansions [1, 20].
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general form (cf. (38))

f ðxÞ ¼ sgn
Xm
i¼1

yiai � ðFðxÞ � FðxiÞÞ þ b

 !

¼ sgn
Xm
i¼1

yiai � kðx;xiÞ þ b

 !
ð40Þ

and the following quadratic program (cf. (35)):

maximize
a2Rm

WðaÞ ¼
Xm
i¼1

ai �
1

2

Xm
i; j¼1

aiajyiyjkðxi;xjÞ ð41Þ

subject to ai50; i ¼ 1; . . . ;m and
Xm
i¼1

aiyi ¼ 0 ð42Þ

Working in the feature space somewhat forces us to solve the dual problem instead of the
primal. The dual problem has the same number of variables as the number of training data.
However, the primal problem may have a lot more (even infinite) variables depending on the
dimensionality of the feature space (i.e. the length of FðxÞ). Though our derivation of the dual
problem in Section 3 considers problems in finite-dimensional spaces, it can be directly extended
to problems in Hilbert spaces [21].

5. KERNELS

We now take a closer look at the issue of the similarity measure, or kernel, k: In this section,
we think of X as a subset of the vector space RN ; ðN 2 NÞ; endowed with the canonical dot
product (3).

5.1. Product features

Suppose we are given patterns x 2 RN where most information is contained in the dth order
products (monomials) of entries ½x�j of x;

½x�j1 � � � ½x�jd ð43Þ

where j1; . . . ; jd 2 f1; . . . ;Ng: In that case, we might prefer to extract these product features, and
work in the feature space H of all products of d entries. In visual recognition problems, where
images are often represented as vectors, this would amount to extracting features which are
products of individual pixels.

For instance, in R2; we can collect all monomial feature extractors of degree 2 in the non-
linear map

F :R2 !H ¼ R3 ð44Þ

ð½x�1; ½x�2Þ/ð½x�
2
1; ½x�

2
2; ½x�1½x�2Þ ð45Þ
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This approach works fine for small toy examples, but it fails for realistically sized problems: for
N-dimensional input patterns, there exist

NH ¼
ðN þ d � 1Þ!
d!ðN � 1Þ!

ð46Þ

different monomials (43), comprising a feature space H of dimensionality NH: For instance,
already 16� 16 pixel input images and a monomial degree d ¼ 5 yield a dimensionality of 1010:

In certain cases described below, there exists, however, a way of computing dot products in
these high-dimensional feature spaces without explicitly mapping into them: by means of kernels
non-linear in the input space RN : Thus, if the subsequent processing can be carried out using dot
products exclusively, we are able to deal with the high dimensionality.

5.2. Polynomial feature spaces induced by kernels

In order to compute dot products of the form ðFðxÞ � Fðx0ÞÞ; we employ kernel representations of
the form

kðx; x0Þ ¼ ðFðxÞ � Fðx0ÞÞ ð47Þ

which allow us to compute the value of the dot product in H without having to carry out the
map F: This method was used by Boser et al. to extend the generalized portrait hyperplane
classifier [8] to non-linear support vector machines [4]. Aizerman et al. called H the linearization
space, and used in the context of the potential function classification method to express the dot
product between elements of H in terms of elements of the input space [3].

What does k look like for the case of polynomial features? We start by giving an example [6]
for N ¼ d ¼ 2: For the map

F2 : ð½x�1; ½x�2Þ/ð½x�
2
1; ½x�

2
2; ½x�1½x�2; ½x�2½x�1Þ ð48Þ

dot products in H take the form

ðF2ðxÞ � F2ðx0ÞÞ ¼ ½x�21½x
0�21 þ ½x�

2
2½x
0�22 þ 2½x�1½x�2½x

0�1½x
0�2 ¼ ðx � x

0Þ2 ð49Þ

i.e. the desired kernel k is simply the square of the dot product in input space. Note that it is
possible to modify ðx � x0Þd such that it maps into the space of all monomials up to degree d[6],
defining

kðx;x0Þ ¼ ððx � x0Þ þ 1Þd ð50Þ

5.3. Examples of kernels

When considering feature maps, it is also possible to look at things the other way around, and
start with the kernel. Given a kernel function satisfying a mathematical condition termed
positive definiteness, it is possible to construct a feature space such that the kernel computes the
dot product in that feature space. This has been brought to the attention of the machine learning
community by [3, 4, 6]. In functional analysis, the issue has been studied under the heading of
reproducing kernel Hilbert space (RKHS).

Besides (50), a popular choice of kernel is the Gaussian radial basis function [3]

kðx;x0Þ ¼ expð�gjjx� x0jj2Þ ð51Þ

An illustration is in Figure 3. For an overview of other kernels, see [1].
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6. n-SOFT MARGIN SUPPORT VECTOR CLASSIFIERS

In practice, a separating hyperplane may not exist, e.g. if a high noise level causes a larger
overlap of the classes. To allow for the possibility of examples violating (23), one introduces
slack variables [6, 22, 23]

xi50; i ¼ 1; . . . ;m ð52Þ

in order to relax the constraints to

yi � ððw � xiÞ þ bÞ51� xi; i ¼ 1; . . . ;m ð53Þ

A classifier which generalizes well is then found by controlling both the classifier capacity (via
jjwjj) and the sum of the slacks

P
i xi: The latter is done as it can be shown to provide an upper

bound on the number of training errors which leads to a convex optimization problem.
One possible realization, called C-SVC, of a soft margin classifier is minimizing the objective

function

tðw; nÞ ¼
1

2
jjwjj2 þ C

Xm
i¼1

xi ð54Þ

subject to constraints (52) and (53), for some value of the constant C > 0 determining the trade-
off. Here and below, we use boldface Greek letters as a shorthand for corresponding vectors
n ¼ ðx1; . . . ; xmÞ: Incorporating kernels, and rewriting it in terms of Lagrange multipliers, this

Figure 3. Example of a support vector classifier found by using a radial basis function kernel
kðx; x0Þ ¼ expð�jjx� x0jj2Þ: Both co-ordinate axes range from �1 to þ1: Circles and disks are two classes
of training examples; the middle line is the decision surface; the outer lines precisely meet constraint (23).
Note that the support vectors found by the algorithm (marked by extra circles) are not centres of clusters,
but examples which are critical for the given classification task. Grey values code the modulus of the

argument
Pm

i¼1 yiai � kðx;xiÞ þ b of the decision function (40) (from [12]).
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again leads to the problem of maximizing (41), subject to the constraints

04ai4C; i ¼ 1; . . . ;m and
Xm
i¼1

aiyi ¼ 0 ð55Þ

The only difference from the separable case is the upper bound C on the Lagrange multipliers ai:
This way, the influence of the individual patterns (which could be outliers) gets limited. As
above, the solution takes form (40).

Another possible realization,called n-SVC of a soft margin variant of the optimal hyperplane
uses the n-parameterization [23]. In it, the parameter C is replaced by a parameter n 2 ½0; 1�
which is the lower and upper bound on the number of examples that are support vectors and
that lie on the wrong side of the hyperplane, respectively.

As a primal problem for this approach, termed the n-SV classifier, we consider

minimize
w2H;n2Rm ; r;b2R

tðw; n;rÞ ¼
1

2
jjwjj2 � nrþ

1

2

Xm
i¼1

xi ð56Þ

subject to yiðhxi;wi þ bÞ5r� xi; i ¼ 1; . . . ;m ð57Þ

and xi50; r50 ð58Þ

Note that no constant C appears in this formulation; instead, there is a parameter n; and also an
additional variable r to be optimized. To understand the role of r; note that for n ¼ 0;
constraint (57) simply states that the two classes are separated by the margin 2r=jjwjj:

To explain the significance of n; let us first introduce the term margin error: by this, we denote
training points with xi > 0: These are points which either are errors, or lie within the margin.
Formally, the fraction of margin errors is

Rr
emp½g� :¼

1

m
jfi j yigðxiÞ5rgj ð59Þ

Here, g is used to denote the argument of the sign in the decision function (40): f ¼ sgn 8g: We
are now in a position to state a result that explains the significance of n:

Proposition 1(Sch .oolkopf et al. [23])

Suppose we run n-SVC with kernel function k; on some data with the result that r > 0: Then

(i) n is an upper bound on the fraction of margin errors (and hence also on the fraction of
training errors).

(ii) n is a lower bound on the fraction of SVs.
(iii) Suppose the data ðx1; y1Þ; . . . ; ðxm; ymÞ were generated i.i.d. from a distribution Prðx; yÞ ¼

PrðxÞ PrðyjxÞ; such that neither Prðx; y ¼ 1Þ nor Prðx; y ¼ �1Þ contains any discrete
component. Suppose, moreover, that the kernel used is analytic and non-constant. With
probability 1, asymptotically, n equals both the fraction of SVs and the fraction of
margin errors.

Before we get into the technical details of the dual derivation, let us take a look at a toy
example illustrating the influence of n (Figure 4). The corresponding fractions of SVs and
margin errors are listed in Table I.
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Let us next derive the dual of the n-SV classification algorithm. We consider the Lagrangian

Lðw; n; b;r;a; b; dÞ ¼
1

2
jjwjj2 � nrþ

1

m

Xm
i¼1

xi

�
Xm
i¼1

ðaiðyiðhxi;wi þ bÞ � rþ xiÞ þ bixi � drÞ ð60Þ

using multipliers ai; bi; d50: This function has to be minimized with respect to the primal
variables w; n; b;r; and maximized with respect to the dual variables a; b; d: Following the same
derivation in (31)–(33), we compute the corresponding partial derivatives and set them to 0,
obtaining the following conditions:

w ¼
Xm
i¼1

aiyixi ð61Þ

ai þ bi ¼ 1=m ð62Þ

Figure 4. Toy problem (task: to separate circles from disks) solved using n-SV classification, with
parameter values ranging from n ¼ 0:1 (top left) to 0.8 (bottom right). The larger we make n; the more
points are allowed to lie inside the margin (depicted by dotted lines). Results are shown for a Gaussian

kernel, kðx; x0Þ ¼ expð�jjx� x0jj2Þ (from [1]).

Table I. Fractions of errors and SVs, along with the margins of class separation, for the toy
example in Figure 4.

n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fraction of errors 0.00 0.07 0.25 0.32 0.39 0.50 0.61 0.71
Fraction of SVs 0.29 0.36 0.43 0.46 0.57 0.68 0.79 0.86
Margin r=jjwjj 0.005 0.018 0.115 0.156 0.364 0.419 0.461 0.546

Note that n upper bounds the fraction of errors and lower bounds the fraction of SVs, and that increasing n; i.e. allowing
more errors, increases the margin.
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Xm
i¼1

aiyi ¼ 0 ð63Þ

Xm
i¼1

ai � d ¼ n ð64Þ

Again, in the SV expansion (61), the ai that are non-zero correspond to a constraint (57) which is
precisely met.

Substituting (61) and (62) into L; using ai;bi; d50; and incorporating kernels for
dot products, leaves us with the following quadratic optimization problem for n-SV
classification:

maximize
a2Rm

WðaÞ ¼ �
1

2

Xm
i; j¼1

aiajyiyjkðxi; xjÞ ð65Þ

subject to 04ai4
1

m
ð66Þ

Xm
i¼1

aiyi ¼ 0 ð67Þ

Xm
i¼1

ai5n ð68Þ

As above, the resulting decision function can be shown to take the form

f ðxÞ ¼ sgn
Xm
i¼1

aiyikðx; xiÞ þ b

 !
ð69Þ

Compared with the C-SVC dual ((41), (55)), there are two differences. First, there is an
additional constraint (68). Second, the linear term

Pm
i¼1 ai no longer appears in the objective

function (65). This has an interesting consequence: (65) is now quadratically homogeneous in a:
It is straightforward to verify that the same decision function is obtained if we start with the
primal function

tðw; n;rÞ ¼
1

2
jjwjj2 þ C �nrþ

1

m

Xm
i¼1

xi

 !
ð70Þ

i.e. if one does use C [1].
The computation of the threshold b and the margin parameter r will be discussed in Sec-

tion 7.4.
A connection to standard SV classification, and a somewhat surprising interpretation of the

regularization parameter C; is described by the following result:

Proposition 2 (Connection n-SVC-C-SVC Sch .oolkopf et al. [23])

If n-SV classification leads to r > 0; then C-SV classification, with C set a priori to 1=mr; leads
to the same decision function.

Copyright # 2005 John Wiley & Sons, Ltd. Appl. Stochastic Models Bus. Ind., 2005; 21:111–136

n-SUPPORT VECTOR MACHINES 125



For further details on the connection between n-SVMs and C-SVMs, see [24, 25]. By considering
the optimal a as a function of parameters, a complete account is as follows:

Proposition 3(Detailed connection n-SVC-C-SVC Chang and Lin [26])Pm
i¼1 ai=ðCmÞ by the C-SVM is a well defined decreasing function of C: We can define

lim
C!1

Pm
i¼1 ai
Cm

¼ nmin50 and lim
C!0

Pm
i¼1 ai
Cm

¼ nmax41 ð71Þ

Then,

1. nmax ¼ 2 minðmþ;m�Þ=m:
2. For any n > nmax; the dual n-SVM is infeasible. That is, the set of feasible points is empty.

For any n 2 ðnmin; nmaxÞ; the optimal solution set of dual n-SVM is the same as that of either
one or some C-SVM where these C form an interval. In addition, the optimal objective
value of n-SVM is strictly positive. For any 04n4nmin; dual n-SVM is feasible with zero
optimal objective value.

3. If the kernel matrix is positive definite, then nmin ¼ 0:

Therefore, for a given problem and kernel, there is an interval ½nmin; nmax� of admissible
values for n; with 04nmin4nmax41: An illustration of the relation between n and C is in
Figure 5.

It has been noted that n-SVMs have an interesting interpretation in terms of reduced convex
hulls [24, 25]. One can show that for separable problems, one can obtain the optimal margin
separating hyperplane by forming the convex hulls of both classes, finding the shortest
connection between the two convex hulls (since the problem is separable, they are disjoint),
and putting the hyperplane halfway along that connection, orthogonal to it. If a problem is
non-separable, however, the convex hulls of the two classes will no longer be disjoint.
Therefore, it no longer makes sense to search for the shortest line connecting them. In this
situation, it seems natural to reduce the convex hulls in size, by limiting the size of the

Figure 5. The relation between n and C (using the RBF kernel on the problem Australian from the Statlog
collection [27]).
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coefficients ci in the convex sets

C� :¼
X

yi¼�1

cixi
X

yi¼�1

ci ¼ 1; ci50

�����
( )

ð72Þ

to some value n 2 ð0; 1Þ: Intuitively, this amounts to limiting the influence of individual points. It
is possible to show that the n-SVM formulation solves the problem of finding the hyperplane
orthogonal to the closest line connecting the reduced convex hulls [24].

We now move on to another aspect of soft margin classification. When we introduced the
slack variables, we did not attempt to justify the fact that in the objective function, we used a
penalizer

Pm
i¼1 xi: Why not use another penalizer, such as

Pm
i¼1 xpi ; for some p50 [22]? For

instance, p ¼ 0 would yield a penalizer that exactly counts the number of margin errors.
Unfortunately, however, it is also a penalizer that leads to a combinatorial optimization
problem. Penalizers yielding optimization problems that are particularly convenient, on the
other hand, are obtained for p ¼ 1 and 2. By default, we use the former, as it possesses an
additional property which is statistically attractive. As the following proposition shows,
linearity of the target function in the slack variables xi leads to a certain ‘outlier’ resistance of
the estimator. As above, we use the shorthand xi for FðxiÞ:

Proposition 4 (Resistance of SV classification Sch .oolkopf et al. [23])

Suppose w can be expressed in terms of the SVs which are not at bound,

w ¼
Xm
i¼1

gixi ð73Þ

with gi=0 only if ai 2 ð0; 1=mÞ (where the ai are the coefficients of the dual solution). Then local
movements of any margin error xj parallel to w do not change the hyperplane.}

This result is about the stability of classifiers. Results have also shown that in general p ¼ 1
leads to fewer support vectors. Further results in support of the p ¼ 1 case can be seen in
[28, 29].

Although Proposition 1 shows that n possesses an intuitive meaning, it is still unclear how to
choose n for a learning task. Steinwart [30] proves that given %RR; a close upper bound on the
expected optimal Bayes risk, an asymptotically good estimate of the optimal value of n is 2 %RR:

Proposition 5

If R½ f � is the expected risk defined in (17),

Rp :¼ inf
f

R½ f � ð74Þ

and the kernel used by n-SVM is universal, then for all n > 2Rp and all e > 0; there exists a
constant c > 0 such that

PðT ¼ fðx1; y1Þ; . . . ; ðxm; ymÞg jR½ f nT �4n� Rp þ eÞ51� e�cm ð75Þ

}Note that the perturbation of the point is carried out in feature space. What it precisely corresponds to in input space
therefore depends on the specific kernel chosen.
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Quite a few popular kernels such as the Gaussian are universal. The definition of a universal
kernel can be seen in Reference [30]. Here, f nT is the decision function obtained by training n-
SVM on the data set T :

Therefore, given an upper bound %RR on Rp; the decision function with respect to n ¼ 2 %RR almost
surely achieves a risk not larger than Rp þ 2ð %RR� RpÞ:

The selection of n and kernel parameters can be done by estimating the leave-one-out-error.
This has been studied in [31].

7. IMPLEMENTATION OF n-SV CLASSIFIERS

We change the dual form of n-SV classifiers to be a minimization problem:

minimizea2Rm WðaÞ ¼
1

2

Pm
i; j¼1 aiajyiyjkðxi;xjÞ

subject to 04ai4
1

m

ð76Þ

Pm
i¼1 aiyi ¼ 0Pm
i¼1 ai ¼ n

ð77Þ

Chang and Lin [26] proves that for any given n; there is at least an optimal solution
which satisfies eTa ¼ n: Therefore, it is sufficient to solve a simpler problem with the equality
constraint (77).

Similar to C-SVC, the difficulty of solving (76) is that yiyjkðxi;xjÞ are in general not zero.
Thus, for large data sets, the Hessian (second derivative) matrix of the objective function cannot
be stored in the computer memory, so traditional optimization methods such as Newton or
quasi Newton cannot be directly used. Currently, the decomposition method is the most used
approach to conquer this difficulty. Here, we present the implementation in Reference [26],
which modifies the procedure for C-SVC.

7.1. The decomposition method

The decomposition method is an iterative process. In each step, the index set of variables is
partitioned to two sets B and N; where B is the working set. Then, in that iteration variables
corresponding to N are fixed while a sub-problem on variables corresponding to B is minimized.
The procedure is as follows:

Algorithm 1 (Decomposition method)

1. Given a number q4l as the size of the working set. Find a1 as an initial feasible solution of
(76). Set k ¼ 1:

2. If ak is an optimal solution of (76), stop. Otherwise, find a working set B� f1; . . . ; lg
whose size is q: Define N � f1; . . . ; lg=B and akB and akN to be subvectors of ak

corresponding to B and N; respectively.
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3. Solve the following sub-problem with the variable aB:

minimizeaB2Rq
1

2

P
i2B; j2B aiajyiyjkðxi;xjÞ þ

P
i2B; j2N aiakj yiyjkðxi;xjÞ

subject to 04ai4
1

m
; i 2 B

ð78Þ

X
i2B

aiyi ¼ �
X
i2N

aki yi ð79Þ

X
i2B

ai ¼ n�
X
i2N

aki ð80Þ

4. Set akþ1B to be the optimal solution of (78) and akþ1N � akN : Set k kþ 1 and goto Step 2.

Note that B is updated in each iteration. To simplify the notation, we simply use B instead
of Bk:

7.2. Working set selection

An important issue of the decomposition method is the selection of the working set B: Here, we
consider an approach based on the violation of the KKT condition. Similar to (30), by putting
(61) into (57), one of the KKT conditions is

ai � yi
Xm
j¼1

ajKðxi;xjÞ þ b

 !
� rþ xi

" #
¼ 0; i ¼ 1; . . . ;m ð81Þ

Using 04ai41=m; (81) can be rewritten asPm
j¼1 ajyiyjkðxi;xjÞ þ byi � r50 if ai5

1

mPm
j¼1 ajyiyjkðxi;xjÞ þ byi � r40 if ai > 0

ð82Þ

That is, an a is optimal for the dual problem (76) if and only if a is feasible and satisfies (81).
Using the property that yi ¼ �1 and representing rWðaÞi ¼

Pm
j¼1 ajyiyjKðxi;xjÞ; (82) can be

further written as

max
i2I1upðaÞ

rWðaÞi4r� b4 min
i2I1

low
ðaÞ
rWðaÞi

and

max
i2I�1up ðaÞ

rWðaÞi4rþ b4 min
i2I�1

low
ðaÞ
rWðaÞi ð83Þ

where

I1upðaÞ :¼ fi j ai > 0; yi ¼ 1g; I1lowðaÞ :¼ i j ai5
1

m
; yi ¼ 1

� �
ð84Þ
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and

I�1up ðaÞ :¼ i j ai5
1

m
; yi ¼ �1

� �
; I�1lowðaÞ :¼ fi j ai > 0; yi ¼ �1g ð85Þ

We call any ði; jÞ 2 I1upðaÞ � I1lowðaÞ or I
�1
up ðaÞ � I�1lowðaÞ satisfying

yirWðaÞi > yjrWðaÞj ð86Þ

a violating pair as (83) is not satisfied. When a is not optimal yet, if any such a violating pair is
included in B; the optimal objective value of (78) is smaller than that at ak: Therefore, the
decomposition procedure has its objective value strictly decreasing from one iteration to the
next.

Therefore, a natural choice of B is to select all pairs which violate (83) the most. To be more
precise, we can set q to be an even integer and sequentially select q=2 pairs fði1; j1Þ; . . . ; ðiq=2; jq=2Þg
from 2 I1upðaÞ � I1lowðaÞ or I

�1
up ðaÞ � I�1lowðaÞ such that

yi1rWðaÞi1 � yj1rWðaÞj15 � � �5yiq=2rWðaÞiq=2 � yjq=2rWðaÞjq=2 ð87Þ

This working set selection is merely an extension of that for C-SVC. The main difference is
that for C-SVM, (83) becomes only one inequality with b: Due to this similarity, we believe that
the convergence analysis of C-SVC [32] can be adapted here though detailed proofs have not
been written and published.

Chang and Lin [26] considers the same working set selection. However, following the
derivation for C-SVC in Reference [33], it is obtained using the concept of feasible directions in
constrained optimization. We feel that a derivation from the violation of the KKT condition is
more intuitive.

7.3. SMO-type implementation

The sequential minimal optimization (SMO) algorithm [34] is an extreme of the decomposition
method where, for C-SVC, the working set is restricted to only two elements. The main
advantage is that each two-variable sub-problem can be analytically solved, so numerical
optimization software are not needed. For this method, at least two elements are required for
the working set. Otherwise, the equality constraint

P
i2B aiyi ¼ �

P
j2N akj yj leads to a fixed

optimal objective value of the sub-problem. Then, the decomposition procedure stays at the
same point.

Now the dual of n-SVC possesses two inequalities, so we may think that more elements are
needed for the working set. Indeed, two elements are still enough for the case of n-SVC. Note
that (79) and (80) can be rewritten asX

i2B;yi¼1

aiyi ¼
n
2
�

X
i2N;yi¼1

aki yi and
X

i2B;yi¼�1

aiyi ¼
n
2
�

X
i2N;yi¼�1

aki yi ð88Þ

Thus, if ði1; j1Þ are selected as the working set selection using (87), yi1 ¼ yj1 ; so (88) reduces to
only one equality with two variables. Then, the sub-problem is still guaranteed to be smaller
than that at ak.
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7.4. The calculation of b and r and stopping criteria

If at an optimal solution, 05ai51=m and yi ¼ 1; then i 2 I1upðaÞ and I1lowðaÞ: Thus, r� b ¼
rWðaÞi: Similarly, if there is another 05aj51=m and yj ¼ �1; then rþ b ¼ rWðaÞj : Thus,
solving two equalities gives b and r: In practice, we average WðaÞi to avoid numerical errors

r� b ¼

P
05ai51=m;yi¼1 rWðaÞiP

05ai51=m;yi¼1 1
ð89Þ

If there are no components such that 05ai51=m; r� b (and rþ b) can be any number in
the interval formed by (83). A common way is to select the middle point and then still solves two
linear equations.

The stopping condition of the decomposition method can easily follow the new form of the
optimality condition (83):

max � min
i2I1

low
ðaÞ
rWðaÞi þ max

i2I1upðaÞ
rWðaÞi; � min

i2I�1
low
ðaÞ
rWðaÞi þ max

i2I�1up ðaÞ
rWðaÞi

 !
5e ð90Þ

where e > 0 is a chosen stopping tolerance.

8. MULTI-CLASS n-SV CLASSIFIERS

Though SVM was originally designed for two-class problems, several approaches have been
developed to extend SVM for multi-class data sets. In this section, we discuss the extension of
the ‘one-against-one’ approach for multi-class n-SVM.

Most approaches for multi-class SVM decompose the data set to several binary problems.
For example, the ‘one-against-one’ approach trains a binary SVM for any two classes of data
and obtains a decision function. Thus, for a k-class problem, there are kðk� 1Þ=2 decision
functions. In the prediction stage, a voting strategy is used where the testing point is designated
to be in a class with the maximum number of votes. In Reference [35], it was experimentally
shown that for general problems, using C-SV classifier, various multi-class approaches give
similar accuracy. However, the ‘one-against-one’ method is more efficient for training. Here, we
will focus on extending it for n-SVM.

Multi-class methods must be considered together with parameter-selection strategies. That is,
we search for appropriate C and kernel parameters for constructing a better model. In the
following, we restrict the discussion on only the Gaussian (radius basis function) kernel
kðxi;xjÞ ¼ e�gjjxi�xj jj

2

; so the kernel parameter is g:With the parameter selection considered, there
are two ways to implement the ‘one-against-one’ method: First, for any two classes of data, the
parameter selection is conducted to have the best ðC; gÞ: Thus, for the best model selected, each
decision function has its own ðC; gÞ: For experiments here, the parameter selection of each
binary SVM is by a five-fold cross-validation. The second way is that for each ðC; gÞ; an
evaluation criterion (e.g. cross-validation) combining with the ‘one-against-one’ method is used
for estimating the performance of the model. A sequence of pre-selected ðC; gÞ is tried to select
the best model. Therefore, for each model, kðk� 1Þ=2 decision functions share the same C and g:

It is not very clear which one of the two implementations is better. On one hand, a single
parameter set may not be uniformly good for all kðk� 1Þ=2 decision functions. On the other
hand, as the overall accuracy is the final consideration, one parameter set for one decision
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function may lead to over-fitting. Chung et al. [36] is the first to compare the two approaches
using C-SVM, where the preliminary results show that both give similar accuracy.

For n-SVM, each binary SVM using data from the ith and the jth classes has an admissible
interval ½nijmin; n

ij
max�; where nijmax ¼ 2 minðmi;mjÞ=ðmi þmjÞ according to Proposition 3. Here mi

and mj are the number of data points in the ith and jth classes, respectively. Thus, if all
kðk� 1Þ=2 decision functions share the same n; the admissible interval is

max
i=j

nijmin; min
i=j

nijmax

� �
ð91Þ

This set is non-empty if the kernel matrix is positive definite. The reason is that Proposition 3
implies nijmin ¼ 0; 8i=j; so mini=j nijmax ¼ 0: Therefore, unlike C of C-SVM, which has a large
valid range ½0;1Þ; for n-SVM, we worry that the admissible interval may be too small. For
example, if the data set is highly unbalanced, mini=j n

ij
min is very small.

We redo the same comparison as that in Reference [36] for n-SVM. Results are in Table II.
We consider multi-class problems tested in Reference [35], where most of them are from the
statlog collection [27]. Except data sets dna, shuttle, letter, satimage, and usps, where test sets
are available, we separate each problem to 80% training and 20% testing. Then, cross validation
are conducted only on the training data. All other settings such as data scaling are the same as
those in Reference [35]. Experiments are conducted using LIBSVM [37], which solves both
C-SVM and n-SVM.

Results in Table II show no significant difference among the four implementations. Note that
some problems (e.g. shuttle) are highly unbalanced so the admissible interval (91) is very small.
Surprisingly, from such intervals, we can still find a suitable n which leads to a good model. This
preliminary experiment indicates that in general the use of ‘one-against-one’ approach for multi-
class n-SVM is viable.

We also present the contours of C-SVM and n-SVM in Figure 6 using the approach that all
decision functions share the same ðC; gÞ: In the contour of C-SVM, the x- and y-axis are log2 C
and log2 g; respectively. For n-SVM, the x-axis is n in interval (91). Clearly, the good region of

Table II. Test accuracy (in percentage) of multi-class data sets by C-SVM and n-SVM.

Data set Class No. # training # testing Common C Different C Common n Different n

Vehicle 4 677 169 85.2 88.8 85.2 85.8
Glass 6 171 43 72.1 72.1 76.7 74.4
Iris 3 120 30 93.3 93.3 93.3 93.3
Dna 3 2000 1186 95.6 95.1 95.0 94.8
Segment 7 1848 462 98.3 97.2 96.7 97.6
Shuttle 7 43500 14500 99.9 99.9 99.7 99.8
Letter 26 15000 5000 97.9 97.7 97.9 96.8
Vowel 11 423 105 98.1 97.1 97.1 98.1
Satimage 6 4435 2000 91.9 92.2 92.1 91.9
Wine 3 143 35 97.1 97.1 97.1 97.1
Usps 10 7291 2007 95.3 95.2 95.3 94.8

The columns ‘Common C’, ‘Different C’, ‘Common n’, ‘Different n’, are testing accuracy of using the same and different

ðC; gÞ; (or ðn; gÞ) for all kðk� 1Þ=2 decision functions. The validation is conducted on the following points of ðC; gÞ :
½2�5; 2�3; . . . ; 215� � ½2�15; 2�13; . . . ; 23�: For n-SVM, the range of g is the same but we validate a 10-point discretization of

n in interval (91) or ½nijmin; n
ij
max�; depending on whether kðk� 1Þ=2 decision functions share the same parameters or not.
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using n-SVM is smaller. This confirms our concern earlier, which motivated us to conduct
experiments in this section. Fortunately, points in this smaller good region still lead to models
that are competitive with those by C-SVM.

There are some ways to enlarge the admissible interval of n: A work to extend algorithm to the
case of very small values of n by allowing negative margins is [38]. For the upper bound,
according to the above Proposition 3, if the classes are balanced, then the upper bound is 1. This
leads to the idea to modify the algorithm by adjusting the cost function such that the classes are
balanced in terms of the cost, even if they are not in terms of the mere numbers of training
examples. For example, we can consider the following formulation:

minimizew2H;n2Rm ;r;b2R tðw; n; rÞ ¼
1

2
jjwjj2 � nrþ

1

2mþ

P
i:yi¼1 xi þ

1

2m�

P
i:yi¼�1 xi

subject to yiðhxi;wi þ bÞ5r� xi

and xi50; r50

The dual is

maximizea2Rm WðaÞ ¼ �
1

2

Pm
i;j¼1 aiajyiyjkðxi;xjÞ

subject to 04ai4
1

2mþ
if yi ¼ 1

04ai4
1

2m�
if yi ¼ �1Pm

i¼1 aiyi ¼ 0;
Pm

i¼1 ai5n

Clearly, when all ai equals its corresponding upper bound, a is a feasible solution with
Pm

i¼1
ai ¼ 1:

Figure 6. 5-fold cross-validation accuracy of the data set satimage. Left: C-SVM, Right: n-SVM.
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Another possibility is

minimizew2H;n2Rm ;r;b2R tðw; n; rÞ ¼
1

2
jjwjj2 � nrþ

1

2 minðmþ;m�Þ
Pm

i¼1 xi

subject to yiðhxi;wi þ bÞ5r� xi

and xi50; r50

The dual is

maximizea2Rm WðaÞ ¼ �
1

2

Pm
i; j¼1 aiajyjyjkðxi;xjÞ

subject to 04ai4
1

2 minðmþ;m�ÞPm
i¼1 aiyi ¼ 0;

Pm
i¼1 ai5n

Then, the largest admissible n is 1.

9. APPLICATIONS OF n-SV CLASSIFIERS

Researchers have applied n-SVM on different applications. Some of them feel that it is easier
and more intuitive to deal with n 2 ½0; 1� than C 2 ½0;1Þ: Here, we briefly summarize some work
which use LIBSVM to solve n-SVM.

In Reference [39], researchers from HP Labs discuss the topics of personal email agent. Data
classification is an important component for which the authors use n-SVM because they think
‘the n parameter is more intuitive than the C parameter’.

Martin et al. [40] applies machine learning methods to detect and localize boundaries of
natural images. Several classifiers are tested where, for SVM, the authors considered n-SVM.

10. CONCLUSION

One of the most appealing features of kernel algorithms is the solid foundation provided by
both statistical learning theory and functional analysis. Kernel methods let us interpret (and
design) learning algorithms geometrically in feature spaces non-linearly related to the input
space, and combine statistics and geometry in a promising way. Kernels provide an elegant
framework for studying three fundamental issues of machine learning:

* Similarity measures}the kernel can be viewed as a (non-linear) similarity measure, and
should ideally incorporate prior knowledge about the problem at hand

* Data representation}as described above, kernels induce representations of the data in a
linear space

* Function class}due to the representer theorem, the kernel implicitly also determines the
function class which is used for learning.

Support vector machines have been one of the major kernel methods for data classification.
Its original form requires a parameter C 2 ½0;1Þ; which controls the trade-off between the
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classifier capacity and the training errors. Using the n-parameterization, the parameter C is
replaced by a parameter n 2 ½0; 1�: In this tutorial, we have given its derivation and present
possible advantages of using the n-support vector classifier.
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